
Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

ARBITRARY-ORDER IIR ANTIDERIVATIVE ANTIALIASING

Pier Paolo La Pastina

Orastron Srl
Sessa Cilento, Italy

pierpaolo.lapastina@orastron.com

Stefano D’Angelo

Independent Researcher
Sessa Cilento, Italy

s@dangelo.audio

Leonardo Gabrielli

Department of Information Engineering,
Università Politecnica delle Marche

Ancona, Italy
l.gabrielli@staff.univpm.it

ABSTRACT

Nonlinear digital circuits and waveshaping are active areas of study,
specifically for what concerns numerical and aliasing issues. In
the past, an effective method was proposed to discretize nonlinear
static functions with reduced aliasing based on the antiderivative of
the nonlinear function. Such a method is based on the continuous-
time convolution with an FIR antialiasing filter kernel, such as a
rectangular kernel. These kernels, however, are far from optimal
for the reduction of aliasing. In this paper we introduce the use
of arbitrary IIR rational transfer functions that allow a closer ap-
proximation of the ideal antialiasing filter, required in the ficti-
tious continuous-time domain before sampling the nonlinear func-
tion output. These allow a higher degree of aliasing reduction and
can be flexibly adjusted to balance performance and computational
cost.

1. INTRODUCTION

The design of virtual analog filters, oscillators and nonlinear com-
ponents is an active area of research, involving expertise in diverse
areas including analog electronics, digital signal processing and
numerical analysis. Nowadays, methods to design band-limited
oscillators [1] and linear filters are well established [2]. Current
trends in this research field are towards implementing stable time-
varying structures [3] and accurate nonlinear devices [4, 5].

Nonlinear devices are generally known to expand the band-
width of an input signal and may, thus, lead to aliasing. Histor-
ically, the only method that was known in this regard relies on
increasing the discrete-time signal sampling rate, i.e. oversam-
pling. This method is rather straightforward to implement and is
quite effective for large oversampling factors, however, it can lead
to a remarkable increase in computational cost. A few years ago,
a novel solution to this issue was found by Parker et al. in [6].
This method, generally named antiderivative antialiasing (AA),
is based on the conversion from discrete-time to continuous-time,
the application of the nonlinear function, and the conversion of
the new signal back to discrete-time domain. This whole process
would not be computationally feasible without applying some sim-
plifying hypotheses, that are: (a) the conversion from discrete- to
continuous-time using linear interpolation, (b) the conversion from
continuous- to discrete-time using a finite-support kernel, such as
a rectangular kernel.

Extensions to the AA method have been introduced by [7],
with a state-space formulation that makes the method suitable to

Copyright: © 2021 Pier Paolo La Pastina et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

nonlinearities with memory, and [8] which applies the concept to
wave-digital filters. The paper in [9] formulates the method in
terms of numerical operators, therefore extending the method to
higher order of the nonlinearity antiderivative.

The effectiveness of the AA method depends on the upsam-
pling filter, for converting from discrete-time to continuous-time
and the anti-aliasing filter, used to return to discrete-time. Cur-
rent AA techniques employ simple linear interpolation as the anti-
imaging filter. Upsampling filters have been discussed in [10],
showing that, although far from optimal, linear interpolation is
sufficient for many applications, while the spectral rolloff of the
antialiasing filter has a larger impact in aliasing reduction. For
this reason we will concentrate our efforts on the design of the an-
tialiasing filter and leave some additional details in the Appendix.

As for the antialiasing filters, in [6] the method describes a
rectangular and a triangular kernel, but in general, a closed-form
solution can be generalized for any piecewise polynomial kernel.
Any such filter will have finite support and therefore far from the
ideal antialiasing filter (i.e. the sinc function). Another disadvan-
tage of extending the filter order is that the expressions for comput-
ing the reduced-aliasing output get more complex with increasing
order and ill-conditioning problems may become a concern.

Infinite impulse response (IIR) filters allow for a steeper rolloff
at a low computational cost and many well known design methods
exist. This makes them interesting candidates as antialiasing filters
in the AA method provided that a method can be derived for their
application. In this work we extend the antiderivative antialiasing
method to IIR filter kernels. The only hypothesis is that the filter
transfer function must be rational, which anyway is the standard
way of dealing with filters in digital signal processing. We provide
a closed form solution for several special cases and show the supe-
rior antialiasing performance of the method. The original method
will be indicated as AA-FIR in contrast to the proposed AA-IIR
method.

The paper is organized as follows. Section 2 summarizes the
AA-FIR method, while Section 3 introduces the proposed AA-IIR
method, deriving a formulation for all filter pole types, and finally
reporting an overview of the method. Experiments are provided in
Section 4 showing the performance of the method and discussing
the computational cost. Finally, conclusions are drawn in Section
5. We provide some more details in the appendices. Appendix
A discusses the effect of linear interpolation for the upsampling,
which is common to other techniques as well. Appendix B relates
the method to the impulse invariance transform by studying the
case of a linear function. Appendix C reformulates the proposed
method for a practical implementation where complex numbers
are avoided.

DAFx.1

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

9

mailto:pierpaolo.lapastina@orastron.com
http://dangelo.audio
mailto:s@dangelo.audio
https://www.univpm.it
https://www.univpm.it
mailto:l.gabrielli@univpm.it
http://creativecommons.org/licenses/by/3.0/

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

2. ANTIDERIVATIVE ANTIALIASING WITH FINITE
SUPPORT KERNELS

In this section we will briefly introduce the formalism used in the
original AA-FIR method. Let f be a (possibly) nonlinear func-
tion, and xn a discrete-time input signal to be processed by the
nonlinear function. The AA-FIR method is based on a (fictitious)
conversion from discrete-time to continuous-time using linear in-
terpolation as follows

x̃(t) = xn + (t− n)(xn+1 − xn) (1)

with n ≤ t ≤ n + 1. The continuous-time signal x̃ is now fed
to the nonlinear function, generating ỹ(t) = f(x̃(t)). The nonlin-
ear output ỹ is generally not bandlimited, therefore an antialiasing
filter must be applied in the continuous-time domain before con-
verting the signal back to the discrete-time domain. The simplest
lowpass filter that can be applied to solve the problem analytically
is a unitary rectangular kernel defined for 0 ≤ t ≤ 1 (assuming
Fs = 1). Such a kernel allows to solve the continuous-time inte-
gral explicitly as follows

yn =

∫ +∞

−∞
h(t)f(x̃(n− t))dt

=

∫ 1

0

f(x̃(n− t))dt

=

∫ 1

0

f(xn−1 + (1− t)(xn − xn−1))dt.

(2)

By applying the following substitution ξ = xn−1 + (1− t)(xn −
xn−1), the integral becomes

yn =

∫ xn

xn−1

f(ξ)

xn − xn−1
dξ

=
1

xn − xn−1

∫ xn

xn−1

f(ξ)dξ

(3)

From there, the solution is easy to obtain and is directly expressed
in terms of the discrete-time input signal

yn =
F1(xn)− F1(xn−1)

xn − xn−1
, (4)

where F1 is the first antiderivative of f . This is where the term
antiderivative antialiasing stems. As can be seen, the transition to
continuous-time is fictitious. Please notice that, from now on, the
mean integral will be simply denoted as

1

b− a

∫ b

a

dx = −
∫ b

a

dx

The process can be extended to higher orders, by integrating
the kernel and thus obtaining, e.g. a triangular kernel or other
piecewise polynomial kernels, as shown originally in [6]. Increas-
ing the order of the kernel improves antialiasing performance, how-
ever, it is prone to more severe ill-conditioning, which in turn may
require a higher numerical precision. Furthermore, the computa-
tional cost increases. The reason for this increase is twofold: (a)
increasing the order of the AA-FIR method increases the num-
ber of past input samples for FIR filtering, thus the expression be-
comes more complex; (b) higher order antiderivatives are required,
which for transcendental functions may become very expensive.
In these cases, it is suggested to reduce the computational cost by
adopting look-up tables.

3. ANTIDERIVATIVE ANTIALIASING WITH IIR
KERNELS

The proposed method takes pace from the AA-FIR, however it for-
mulates the solution allowing for antialiasing IIR rational trans-
fer functions of arbitrary order and design, including the most
common ones, such as Butterworth, Chebyshev or Elliptical. We
will consider only low-pass causal kernels for the antialiasing fil-
ter. Under the hypothesis of a causal kernel, the support of h is
[0,+∞) and we assume the same for x̃. We also assume f(0) = 0
for convenience1. Under these hypotheses, the first integral of Eq.
(2) reduces to

yn =

∫ n

0

h(t)f(x̃(n− t))dt. (5)

To calculate this, we can divide the integration interval into n in-
tervals of unitary length and apply linear interpolation from Eq (1)

yn =

n−1∑
k=0

∫ k+1

k

h(t)f(x̃(n− t))dt

=

n−1∑
k=0

∫ k+1

k

h(t)f(xn−k−1 + (k + 1− t)(xn−k − xn−k−1))dt.

Similarly to what was done in the AA-FIR case we can apply the
substitution ξ = xn−k−1 + (k + 1 − t)(xn−k − xn−k−1). This
leads to

yn =

n−1∑
k=0

−
∫ xn−k

xn−k−1

f(ξ)h

(
k + 1− ξ − xn−k−1

xn−k − xn−k−1

)
dξ

or, equivalently,

yn =

n−1∑
k=0

−
∫ xk+1

xk

f(ξ)h

(
n− k − ξ − xk

xk+1 − xk

)
dξ. (6)

In the general case, this expression cannot be further simpli-
fied. The expression has three unknowns and is not amenable,
in the general case, to a recursive implementation. More specif-

ically, yn+1 can be calculated recursively only if h

(
n + 1 −

k − ξ − xk

xk+1 − xk

)
can be expressed in terms of h

(
n − k −

ξ − xk

xk+1 − xk

)
. To overcome these issues, we need to impose fur-

ther constraints.
Filters, in signal processing, are usually expressed as rational

functions of the Laplace or the Z variable. We can, thus, express
the desired filter kernel as a rational function in the Laplace do-
main, and derive more appropriate expressions for real-time im-
plementation of the AA-IIR method. This will lead to tractable
expressions that lend themselves to real-time use.

3.1. Rational Function of Real Poles

Let us now consider a rational transfer function H(s) = F (s)
G(s)

,
where F and G are real-valued polynomials of order q and p, re-
spectively and q ≤ p. Denominator G can be decomposed as the

1If this does not hold true, it is possible to define a function f⋆(x) =
f(x)− f(0), apply the following reasoning to f⋆(x) and finally add con-
stant term f(0) in the end

DAFx.2

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

10

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

product

G(s) = A(s−α1)
m1 . . . (s−αp)

mp(s−β1)
µ1(s−β1)

µ1 . . .

· · · (s− βq)
µq (s− βq)

µq , (7)

where α1, . . . , αp are the real poles of H , β1, β1, . . . , βq, βq are
the complex poles and m1, . . . ,mp, µ1, . . . , µq the multiplicities
of α1, . . . , αp, β1, . . . , βq , respectively. It is useful to recall that
the condition for stability is α, . . . , αp, ℜ(β1), . . . ,ℜ(βq) < 0.
The application of a partial fraction decomposition to H(s) results
in the following

H(s) = A0 +
A11

s− α1
+

A12

(s− α1)2
+ . . .

A1m1

(s− α1)m1

+
Ap1

(s− α2)
+

Ap2

(s− α2)2
+ . . .

Apmp

(s− α2)mp
+ . . .

+
B11

s− β1
+

B12

(s− β1)2
+ · · ·+ B1µ1

(s− β1)µ1

+
B11

s− β1

+
B12

(s− β1)
2
+ · · ·+ B1µ1

(s− β1)
µ1

+ . . .

(8)

where the terms Aij , Bkl are the residues. Eq. 8 informs us that
each term can be treated separately and then summed to the others.
Specifically, for any λ either real or complex, the inverse Laplace
transform of 1

(s−λ)m
is tm−1

(m−1)!
eλt·u(t), where u(t) is the unit step

function. Therefore we will consider the effect of each individual
pole and derive equations for real-time solution in the following
paragraphs. Since u(t) = 0 ∀t < 0 the outcome is a causal filter.
The inverse Laplace of the constant term A0 is trivially h(t) =
A0δ(t), therefore A0f(x(t)) is simply added to the final result.

3.1.1. Simple Real Pole

The simplest case is that of a single real pole. In this case the
inverse Laplace transform is h(t) = Aeαtu(t) (α < 0), which
can be plugged in Eq. (6) yielding for time n+ 1

yn+1 = A
n∑

k=0

−
∫ xk+1

xk

f(ξ)e
α
(
n+1−k− ξ−xk

xk+1−xk

)
dξ

= A

n−1∑
k=0

−
∫ xk+1

xk

f(ξ)e
α
(
n+1−k− ξ−xk

xk+1−xk

)
dξ+

+A−
∫ xn+1

xn

f(ξ)e
α
(
1− ξ−xn

xn+1−xn

)
dξ

= eαyn +A−
∫ xn+1

xn

f(ξ)e
α
(
1− ξ−xn

xn+1−xn

)
dξ.

(9)

This allows to compute yn+1 recursively by storing its previous
value yn and computing the integral. As can be seen, Eq. 9, com-
pared to the three variables integral of Eq. (6), has now only two
unknowns, and can computed recursively. Please note that this is
possible due to h(t) being reduced to an exponential. The inte-
gral can be solved analytically, numerically, or can be stored in a
lookup table. Expressions such as eα can be precomputed and the
value of the previous output can be stored in memory.

3.1.2. Multiple Real Poles

From Eq. (8) we can observe that for those poles with multiplicity
m > 1, the inverse transform has the form A tr

r!
eαtu(t) for r =

0, . . . ,m − 1. Therefore, by plugging h(t) = A tr

r!
eαtu(t), into

Eq (6)

yn =
A

r!

∑n−1
k=0

−
∫ xk+1

xk
f(ξ)

(
n− k − ξ−xk

xk+1−xk

)r

e
α
(
n−k− ξ−xk

xk+1−xk

)
dξ.

(10)
Let

Ik,r,n = −
∫ xk+1

xk

f(ξ)

(
n−k− ξ − xk

xk+1 − xk

)r

e
α
(
n−k− ξ−xk

xk+1−xk

)
dξ

the solution can be now written as

yn =
A

r!

n−1∑
k=0

Ik,r,n.

for k = 0, . . . , n− 1,
The evaluation of the integrals Ik,r,n can be done in a recursive

way. At time step n+1 it is only necessary to compute the integral

In,r,n+1 = −
∫ xn+1

xn

f(ξ)

(
1− ξ − xn

xn+1 − xn

)r

e
α
(
1− ξ−xn

xn+1−xn

)
dξ.

While, for k < n, one has

Ik,r,n+1 = −
∫ xk+1

xk

f(ξ)

(
n+ 1− k− ξ − xk

xk+1 − xk

)r

·

· eα
(
n+1−k− ξ−xk

xk+1−xk

)
dξ.

By recalling (a+ 1)r =
∑r

l=0

(
r
l

)
al, one gets

Ik,r,n+1 = eα−
∫ xk+1

xk

f(ξ)
r∑

l=0

(
r

l

)(
n−k − ξ − xk

xk+1 − xk

)l

·

· eα
(
n−k− ξ−xk

xk+1−xk

)
dξ,

thus,

Ik,r,n+1 = eα
r∑

l=0

(
r

l

)
Ik,l,n. (11)

Therefore, to compute the coefficient related to the exponential r,
the previous exponentials must be known. However, this does not
add further computations because, in general, the previous expo-
nentials appear in other terms of the inverse transform.

3.1.3. Simple Complex Conjugate Poles

Complex conjugate addenda from Eq. (8) that have multiplicity
µ = 1 can be considered together. Their contribution in the time
domain is h(t) = (Beβt + Beβt)u(t) = 2ℜ(Beβt)u(t), with
B, β ∈ C and ℜ(β) < 0. From (6) we can, thus, compute the
output as

yn = 2

n−1∑
k=0

−
∫ xk+1

xk

f(ξ)ℜ
(
Be

β
(
n−k− ξ−xk

xk+1−xk

))
dξ.

To ease the computation of the recursion it is better to calculate
first

ŷn = 2B

n−1∑
k=0

−
∫ xk+1

xk

f(ξ)e
β
(
n−k− ξ−xk

xk+1−xk

)
dξ,

DAFx.3

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

11

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

and then
yn = ℜ(ŷn). (12)

Following the same procedure of Section 3.1.1, we obtain

ŷn+1 = eβ ŷn + 2B−
∫ xn+1

xn

f(ξ)e
β
(
1− ξ−xn

xn+1−xn

)
dξ (13)

and convert this to yn+1 using Eq. (12). In the Appendix we will
reformulate this in terms of real numbers, for the sake of complete-
ness, which is more apt to real-time implementation.

3.1.4. Multiple Complex Conjugate Poles

Let h(t) = tr

r!
(Beβt + Beβt)u(t) = 2 tr

r!
ℜ(Beβt)u(t), with B

and β as discussed in the previous section. Eq. (6) gives now

yn =
2

r!

n−1∑
k=0

−
∫ xk+1

xk

f(ξ)

(
n− k − ξ − xk

xk+1 − xk

)r

·

· ℜ
(
Be

β
(
n−k− ξ−xk

xk+1−xk

))
dξ.

As in Section 3.1.3, we first compute

ŷn =
2B

r!

∑n−1
k=0

−
∫ xk+1

xk
f(ξ)

(
n− k − ξ−xk

xk+1−xk

)r

e
β
(
n−k− ξ−xk

xk+1−xk

)
dξ,

(14)
and then yn = ℜ(ŷn). The integral can be defined as

Ik,r,n = −
∫ xk+1

xk

f(ξ)

(
n−k− ξ − xk

xk+1 − xk

)r

e
β
(
n−k− ξ−xk

xk+1−xk

)
dξ

for k = 0, . . . , n− 1, thus yielding

ŷn =
2B

r!

n−1∑
k=0

Ik,r,n.

A usable equation for computing the output recursively can be ob-
tained as done in Section 3.1.2. The integral at step n + 1, is
obtained as

In,r,n+1 = −
∫ xn+1

xn

f(ξ)

(
1− ξ − xn

xn+1 − xn

)r

e
β
(
1− ξ−xn

xn+1−xn

)
dξ.

while the integrals Ik,r,n+1 for k < n can be computed as follows

Ik,r,n+1 = eβ
r∑

l=0

(
r

l

)
Ik,l,n.

3.2. Algorithm Properties and Overview

In the above, we have derived expressions to compute the nonlin-
ear output for rational functions by residual decomposition. We
would like to summarize here the steps of the algorithm for the
design and implementation of the AA-IIR method.

• Devise IIR filter specifications according to the problem at
hand and the computational constraints;

• Compute the Laplace filter coefficients in terms of rational
polynomials F (s), G(s);

• Conduct Partial Fraction Decomposition;

Experiment Parameters
OVS-2 Oversampling factor: 2
OVS-8 Oversampling factor: 8

AA-FIR-1 Rectangular kernel
AA-FIR-2 Triangular kernel
AA-IIR-1 Butterworth order 2, Fc = 0.45 · Fs

AA-IIR-2 Chebyshev type II, order 10, Fbs = 0.61 · Fs

Table 1: The methods selected for comparison. Please note that the
base sampling rate is 44100 for all experiments. The oversampling
methods uses a Chebyshev type I filter, order 8, cutoff at 0.8 · Fs

(Matlab’s default).

• For each real pole/complex conjugate pair, derive a com-
putable expression according to Sections 3.1.1-3.1.4. The
definite integrals can be computed numerically or analyti-
cally using the fundamental theorem of calculus;

• Sum all the partial outputs from each pole/conjugate pole
to obtain the final expression.

Similarly to the AA-FIR method, the computational cost of the
overall algorithm depends on both the IIR filter order and on the
nonlinear function. Fortunately, increasing the order of the filter,
linearly increases the computational cost, and savings can be done
by storing expressions that are used multiple times. As for ill con-
ditioning, differently from the AA-FIR methods, where the kernel
order is proportional to the nonlinear function antiderivative order,
with our AA-IIR method, raising the order of the Laplace-domain
filter only adds more addenda as per Eq. (8). It must be reminded
that the filter introduces phase distortion. Since causal IIR filters
are not linear phase, this issue should be carefully considered when
implementing the method.

4. EXPERIMENTS

In order to evaluate the effectiveness of this method we consider
the hard clipping function, defined as

f(x) =

{
x −1 ≤ x ≤ 1

sgn(x) otherwise
(15)

This nonlinear function is commonly used for comparing antialias-
ing techniques [6]. We will compare oversampling, AA-FIR and
AA-IIR and, for a fruitful comparison, we will describe the com-
putational cost of each method.

Considering that each method has different settings that can be
adjusted to trade cost and performance, we have provided a num-
ber of configurations, shown in Table 1. For the proposed method
we have taken a 2nd order Butterworth filter, which requires com-
puting only one pair of complex conjugate poles (one integral), and
a 10th-order Cebyshev type II filter, with a steep transition and
stopband attenuation of -60dB. The Laplace-domain filters used
for our method are shown in Figure 1 and compared to the rect-
angle kernel used by the AA-FIR method. A reference Matlab
implementation for the proposed method is provided online2.

For a fair comparison, OVS-2 and OVS-8 employ linear inter-
polation for the upsampling.

2http://www.dangelo.audio/dafx2021-aaiir.html

DAFx.4

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

12

http://www.dangelo.audio/dafx2021-aaiir.html

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

0 10 20 30 40 50 60 70 80

-80

-60

-40

-20

0

0 10 20 30 40 50 60 70 80

-80

-60

-40

-20

0

0 10 20 30 40 50 60 70 80

-80

-60

-40

-20

0

Figure 1: Comparison of the antialiasing filters used in AA-FIR-1 (left), AA-IIR-1 (middle), AA-IIR-2 (right). The red line indicates the
Nyquist frequency at 44100 Hz.

4.1. Aliasing Reduction

We first perform a linear sine sweep for all the methods considered
in this work, running through the hard clipper after multiplication
with an input gain of 10. Spectrograms are computed using 2048
bins, a Blackman-Harris window and an overlap of 16 samples, as
shown in Figure 2. The figures show that the AA-FIR-1 and AA-
IIR-1 are comparable, with the AA-IIR-1 slightly superior to AA-
FIR-1, while AA-IIR-2 is superior to AA-FIR-2. Oversampling
by a factor 8 is among the best methods, while oversampling by a
factor 2 is the worst among the antialiasing methods.

To precisely assess the performance of the methods, we con-
ducted a batch estimate of the SNR for the whole range of a piano
keyboard. We fed a constant frequency sine signal with input gain
10, as above, through the different hard clipping methods, and es-
timated the SNR considering all components but the partials as
noise. Figure 3 reports data from this benchmark. As can be seen,
the performance of AA-IIR-1 is similar or slightly better than AA-
FIR-1, while the performance of AA-IIR-2 outperforms all other
methods by a large margin, with exception of OVS-8. Please note,
however, that the proposed method performs almost as good as
OVS-8 when the fundamental frequency increases, i.e. where an-
tialiasing performance matters more.

Since the proposed method allows generalizing to any kind
of filter, there is headroom for improvement, and the performance
can be optimized for the specific task. As an example, with But-
terworth filters, the cutoff can be decreased if the higher region of
the spectrum is not perceptually relevant. With Chebyshev II fil-
ters the filter cutoff can be carefully selected to make the stopband
ripple notches be reflected just above DC, to reduce the perceptual
impact of aliased components that occur below the fundamental of
a tone. Additionally, the order of the filter can be adjusted to meet
the desired performance and computational cost trade off.

4.2. Computational Cost

To conclude the experimental section we illustrate the computa-
tional cost involved with the discussed solutions for the hard clip-
per case.

The trivial method only consists of two max and min oper-
ations. Oversampling requires running interpolation and decima-
tion filters and running the trivial method at a higher sampling rate.
As an example, in this work we employed linear interpolation for
interpolation and an 8-th order IIR decimation filter. The cost of
the OVS-8 method is, thus, 312 floating point operations for the fil-
ters, plus the hard clipper, which can be implemented with 8 max
and 8 min floating point operations per sample.

The AA-FIR-1 method requires computing the first integral of
the hard clipping function and dividing by the first-order differ-
ence, i.e. 5 floating point MUL and SUM and 1 DIV. The cost
largely increases with the AA-FIR-2 method, where the required
operations are: 25 SUM and MUL, 2 DIV, unless the first order
difference is below a small numerical threshold for which less op-
erations are required.

With the proposed methods, computing the exponential func-
tions is the most expensive operation. For each pair of complex
conjugate poles, i.e. we have - in the worst case - 2 exponentials,
1 DIV, 16 SUM and MUL. The worst case, however, occurs only
for those low probability cases where (x[n] > 1 AND x[n− 1] <
−1) or (x[n] > −1 AND x[n − 1] < 1), which is uncommon
with audio signal. On the other hand, for those cases where either
x[n] or x[n − 1] exceed the clipping threshold, the result of the
integral is a constant, therefore in practical applications the com-
putational cost is lower than the worst case. We drawn a statistics
by feeding our method with a logarithmic sine sweep up to Fs/2
with gain 10, and counting the occurrences of the worst and best
case solutions over a number of 44100 · 10 samples. We observed
that only 16.3% of the input samples require computing the solu-
tion according to the worst case, while 73.2% of the integrals can
be solved using the precomputed constant (percentage have been
rounded to the nearest tenth).

In general, the cost of functions including an exponential can
be highly reduced by taking advantage of the Lambert W function
[11], while the cost of the exponential itself can be reduced by
taking advantage of the floating point representation. In this case,
it requires only 9 floating point operations and some integer and
casting operations. In consideration of this, the AA-IIR-1 method,
on average, has a computational cost comparable to AA-FIR-2 or
inferior, while the AA-IIR-2 is still much cheaper than OVS-8.

5. CONCLUSIONS

This paper described a technique for aliasing reduction with static
nonlinearities that allows extended flexibility in both performance
and computational cost. The proposed method extends the work by
Parker et al. to rational IIR filters, being based on the application
of the nonlinearity in the continuous-time domain and an antialias-
ing filter before discretizing back the signal to discrete time. While
previously a computable solution was known for antialiasing FIR
kernels, in our work we describe how to implement rational IIR
filter transfer functions at a reasonable computational cost. We de-
rive the expressions for simple and multiple real poles, single and
conjugate complex poles, which are used separately to compute

DAFx.5

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

13

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

1 2 3 4 5 6 7 8 9
0

5

10

15

20

TRIVIAL

1 2 3 4 5 6 7 8 9
0

5

10

15

20

OVS-2

1 2 3 4 5 6 7 8 9
0

5

10

15

20

OVS-8

1 2 3 4 5 6 7 8 9
0

5

10

15

20

AA-FIR-1

1 2 3 4 5 6 7 8 9
0

5

10

15

20

AA-FIR-2

1 2 3 4 5 6 7 8 9
0

5

10

15

20

AA-IIR-1

1 2 3 4 5 6 7 8 9
0

5

10

15

20

AA-IIR-2

Figure 2: Spectrograms of a linear sine sweep through the hard
clipper, with input gain 10, for each of the antialiasing methods in
Table 1.

10 20 30 40 50 60 70 80

20

40

60

80

100

Figure 3: SNR performance of the hard clipper antialiasing meth-
ods for the 88 piano keyboard notes, with a sine input with gain
10: trivial (fine dotted line), AA-FIR-1 (gray diamonds), AA-IIR-1
(black diamonds), AA-FIR-2 (solid gray), AA-IIR-2 (solid black),
OVS-8 (dashed line).

the final result. The results in terms of performance depend on the
filter design, which can be flexible and can reduce aliasing by a
large amount at high frequency with a reduction of the computa-
tional cost with respect to oversampling techniques, as shown by
our experiments.

An upper bound in terms of SNR is imposed by the use of lin-
ear interpolation for conversion from discrete- to continuous-time,
as discussed in the Appendix. Future works should concentrate on
removing this constraint by finding alternative ways to formulate
the problem.

A. APPENDIX: EFFECT OF THE LINEAR
INTERPOLATION

As discussed in the introduction of the paper, linear interpolation
provides one quick way to upsample the signal in oversampling
methods, and is the only currently known method to provide an
analytical solution in AA methods. However, it allows spurious
components into the upsampled signal (or into the continuous-time
signal, in our case). These components are, then, processed by the
nonlinearity, introducing additional undesired tones. We can easily
show why linear interpolation impairs the signal and, thus, why it
produces spurious components that cannot be eliminated during
conversion from continuous- to discrete-time, and thus, represent
an upper bound to SNR performance.

The operation of upsampling a discrete-time into continuous-
time using linear interpolation is equivalent to convolution with a
triangular kernel

ht(t) =

t+ 1 −1 ≤ t ≤ 0

1− t 0 ≤ t ≤ 1

0 otherwise

(16)

whose Laplace transform is

H(s) =
e−s + s− 1

s2
. (17)

The transfer function of such a kernel, therefore, is 1/2 for s = 0
and falls to 0 only at +∞, allowing replicas of the discrete-time
spectrum to pass through, impairing the reconstruction quality.

DAFx.6

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

14

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

The aliasing reduction performance of any AA method will,
thus, be impaired by the amount of spurious components allowed
by the linear interpolation filter. For this reason, the OVS-8 and
the AA-IIR-2 methods are very close: they are reaching the upper
SNR bound imposed by the upsampling filter. Of course, oversam-
pling can be implemented with arbitrary upsampling filters, while
the currently proposed AA methods are defined only for linear in-
terpolation upsampling. Future works should aim at finding viable
solutions using AA methods with better upsampling filters.

B. APPENDIX: RELATION TO THE IMPULSE
INVARIANCE TRANSFORM

It is worth applying the proposed method to the linear case, in or-
der to gain further insight. Let, thus, f(x) = x, if the antialiasing
filter is a first order lowpass with pole α < 0 and unity gain, its
transfer function and impulse response are

H(s) = − α

s− α
,

h(t) = −αeαtu(t).

Eq. (9) is, thus

yn+1 = eαyn − α−
∫ xn+1

xn

ξe
α
(
1− ξ−xn

xn+1−xn

)
dξ.

This can be solved analytically, yielding

yn+1 = eαyn − eα − α− 1

α
xn+1 −

(α− 1)eα + 1

α
xn.

The transfer function is, thus

H(z) = − 1

α

(eα − α− 1) + ((α− 1)eα + 1)z−1

1− eαz−1
.

This transfer function preserves unity gain at DC and the denomi-
nator has the same form of the impulse invariance transform [12].
This may add further insight to this family of antialiasing methods
as they may be understood in relation to known linear filter dis-
cretization techniques. Please note that Fs is unitary as in the rest
of the paper.

C. APPENDIX: REAL-VALUED FORMULATION FOR
COMPLEX POLES

IIR antialiasing filter may often have simple or multiple complex
conjugate poles in their transfer function. In Sections 3.1.3-3.1.4
we derived expressions for the AA-IIR method keeping the com-
plex notation and converting the result to real values (see Eq. 12).
In this section we express the same algorithm in terms of real val-
ues, which is more convenient to implement. We will derive the
equations for simple complex conjugate poles and multiple com-
plex conjugate poles.

C.1. Simple Complex Conjugate Poles

By letting ŷn = yn+jzn and considering again Eq. (13), one gets

yn+1 =ℜ(ŷn+1)

=ℜ(eβ)yn −ℑ(eβ)zn

+ 2ℜ(B)−
∫ xn+1

xn

f(ξ)ℜ(eβ
(
1− ξ−xn

xn+1−xn

)
)dξ

− 2ℑ(B)−
∫ xn+1

xn

f(ξ)ℑ(eβ
(
1− ξ−xn

xn+1−xn

)
)dξ.

(18)

Let

I(R)
n := −

∫ xn+1

xn

f(ξ)ℜ(eβ
(
1− ξ−xn

xn+1−xn

)
)dξ,

I(I)n := −
∫ xn+1

xn

f(ξ)ℑ(eβ
(
1− ξ−xn

xn+1−xn

)
)dξ,

(19)

then Eq. (18) can be rewritten as

yn+1 = ℜ(eβ)yn −ℑ(eβ)zn +2ℜ(B)I(R)
n − 2ℑ(B)I(I)n . (20)

Similarly for the imaginary part

zn+1 = ℑ(eβ)yn +ℜ(eβ)zn +2ℑ(B)I(R)
n +2ℜ(B)I(I)n . (21)

Such a formulation allows to find a recursive expression involving
only yn. By rewriting equations (20) and (21) for time n + 2 and
solving the system, one gets

yn+2 = 2ℜ(eβ)yn+1 − |eβ |2yn + 2ℜ(B)I
(R)
n+1 (22)

− 2ℜ(Beβ̄)I(R)
n − 2ℑ(B)I

(I)
n+1 + 2ℑ(Beβ̄)I(I)n . (23)

In the linear case (f(x) = x) this becomes a second order lin-
ear filter with two complex conjugate poles, not unlike what was
shown in Appendix B.

This real-valued formulation of the method, however, may
present further difficulties. Let β = β1 + jβ2 and expressing
the integrals from Eq. (19) explicitly, one gets

I
(R)
n = −

∫ xn+1

xn

f(ξ)e
β1

(
1− ξ−xn

xn+1−xn

)
cos

(
β2

(
1−

ξ − xn

xn+1 − xn

))
dξ

I
(I)
n = −

∫ xn+1

xn

f(ξ)e
β1

(
1− ξ−xn

xn+1−xn

)
sin

(
β2

(
1−

ξ − xn

xn+1 − xn

))
dξ

These can be harder to solve analytically compared to that in Eq
(13).

C.2. Multiple Complex Conjugate Poles

A real-valued formulation for the method can be expressed also in
the multiple complex conjugate poles case.

Let β be one of the complex conjugate poles and m its multi-
plicity. The partial fraction decomposition will show terms of the
type

B

(s− β)r+1
+

B̄

(s− β̄)r+1

where r = 0, . . . ,m− 1. The related impulse response is h(t) =
tr

r!
(Beβt + B̄eβ̄t)u(t) = 2 tr

r!
ℜ(Beβt)u(t). For this impulse re-

DAFx.7

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

15

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

sponse, the algorithm is, thus, for 0 ≤ k < n

Ik,r,n = −
∫ xk+1

xk

f(ξ)

(
n− k −

ξ − xk

xk+1 − xk

)r

e
β
(
n−k− ξ−xk

xk+1−xk

)
dξ,

ŷn =
2B

r!

n−1∑
k=0

Ik,r,n,

yn = ℜ(ŷn),
(24)

and the integrals Ik,r,n+1 for k < n can be computed recursively
as follows

Ik,r,n+1 = eβ
r∑

l=0

(
r

l

)
Ik,l,n.

To formulate the algorithm let Ik,r,n = I
(R)
k,r,n + jI

(I)
k,r,n, and

I
(R)
k,r,n = −

∫ xk+1

xk
f(ξ)

(
n− k − ξ−xk

xk+1−xk

)r

ℜ(eβ
(
n−k− ξ−xk

xk+1−xk

)
)dξ

I
(I)
k,r,n = −

∫ xk+1

xk
f(ξ)

(
n− k − ξ−xk

xk+1−xk

)r

ℑ(eβ
(
n−k− ξ−xk

xk+1−xk

)
)dξ.

By extracting the real part of ŷn in (24) one gets

yn =
2

r!

n−1∑
k=0

(ℜ(B)I
(R)
k,r,n −ℑ(B)I

(I)
k,r,n),

and the recursive integrals become

I
(R)
k,r,n+1 =

r∑
l=0

(
r

l

)
(ℜ(eβ)I(R)

k,l,n −ℑ(eβ)I(I)k,l,n);

I
(I)
k,r,n+1 =

r∑
l=0

(
r

l

)
(ℑ(eβ)I(R)

k,l,n + ℜ(eβ)I(I)k,l,n)

for k < n.

D. REFERENCES

[1] Vesa Valimaki and Antti Huovilainen, “Antialiasing oscilla-
tors in subtractive synthesis,” IEEE Signal Processing Mag-
azine, vol. 24, no. 2, pp. 116–125, 2007.

[2] Udo Zölzer, DAFX-Digital Audio Effects, John Wiley and
Sons, 2011.

[3] Aaron Wishnick, “Time-varying filters for musical applica-
tions.,” in Proc. Int. Conf. Digital Audio Effects (DAFx-14),
2014, pp. 69–76.

[4] Julian Parker and Stefano D’Angelo, “A digital model of the
Buchla lowpass-gate,” in Proceedings of the International
Conference on Digital Audio Effects, 2013, pp. 278–285.

[5] Fabián Esqueda, Henri Pöntynen, Julian Parker, and Stefan
Bilbao, “Virtual analog models of the lockhart and serge
wavefolders,” Applied Sciences, vol. 7, no. 12, pp. 1328,
2017.

[6] Julian Parker, Vadim Zavalishin, and Efflam Le Bivic,
“Reducing the aliasing of nonlinear waveshaping using
continuous-time convolution,” in Proc. Int. Conf. Digital
Audio Effects (DAFx-16), Brno, Czech Republic, 2016, pp.
137–144.

[7] Martin Holters, “Antiderivative antialiasing for stateful sys-
tems,” Applied Sciences, vol. 10, no. 1, pp. 20, Dec 2019.

[8] Davide Albertini, Alberto Bernardini, and Augusto Sarti,
“Antiderivative antialiasing in nonlinear wave digital filters,”
in Proceedings of the International Conference on Digital
Audio Effects, 2020.

[9] Stefan Bilbao, Fabien Esqueda, Julian Parker, and Vesa
Välimäki, “Antiderivative antialiasing for memoryless non-
linearities,” IEEE Signal Processing Letters, vol. 24, no. 7,
pp. 1049–1053, 2017.

[10] Julen Kahles, Fabián Esqueda, and Vesa Välimäki, “Over-
sampling for nonlinear waveshaping: Choosing the right fil-
ters,” Journal of the Audio Engineering Society, vol. 67, no.
6, pp. 440–449, 2019.

[11] Stefano D’Angelo, Leonardo Gabrielli, and Luca Turchet,
“Fast approximation of the Lambert W function for virtual
analog,” in Proceedings of the International Conference on
Digital Audio Effects, 2019.

[12] Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time
Signal Processing, Prentice Hall Press, Upper Saddle River,
NJ, USA, 3rd edition, 2009.

DAFx.8

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

16

	1 Introduction
	2 Antiderivative Antialiasing with Finite Support kernels
	3 Antiderivative Antialiasing with IIR kernels
	3.1 Rational Function of Real Poles
	3.1.1 Simple Real Pole
	3.1.2 Multiple Real Poles
	3.1.3 Simple Complex Conjugate Poles
	3.1.4 Multiple Complex Conjugate Poles

	3.2 Algorithm Properties and Overview

	4 Experiments
	4.1 Aliasing Reduction
	4.2 Computational Cost

	5 Conclusions
	A Appendix: Effect of the linear interpolation
	B Appendix: Relation to the Impulse Invariance Transform
	C Appendix: Real-Valued Formulation for Complex Poles
	C.1 Simple Complex Conjugate Poles
	C.2 Multiple Complex Conjugate Poles

	D References

@inproceedings{DAFx20in21_paper_27,
 author = "La Pastina, Pier Paolo and D'Angelo, Stefano and Gabrielli, Leonardo",
 title = "{Arbitrary-Order IIR Antiderivative Antialiasing}",
 booktitle = "Proceedings of the 24-th Int. Conf. on Digital Audio Effects (DAFx20in21)",
 editor = "Evangelista, G. and Holighaus, N.",
 location = "Vienna, Austria",
 eventdate = "2021-09-08/2021-09-10",
 year = "2021",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "2",
 doi = "",
 pages = "9--16"
}

