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ABSTRACT

Chaotic oscillators are exciting sources for sound production due
to their simplicity in implementation combined with their rich sonic
output. However, the richness comes with difficulty of control,
which is paramount to both their detailed understanding and in
live musical performance. In this paper, we propose perceptually-
motivated parameter planes as a framework for studying the be-
havior of chaotic oscillators for musical use. Motivated by analysis
via winding numbers, we extend traditional study of chaotic oscil-
lators by using local features that are perceptually inspired. We
illustrate the framework on the example of variations of the circle
map. However, the framework is applicable for a wide range of
sound synthesis algorithms with nontrivial parametric mappings.

1. INTRODUCTION

The use of nonlinear and chaotic oscillators for sound synthesis
poses a trade-off. On the one hand, many of them have very simple
algorithmic realizations and very diverse and rich sonic outcomes.
On the other hand, the output becomes complex with increased
nonlinearity. This complexity is often referred to as chaos and is
characterized by drastic changes in output in response to minor
parametric changes and a sensitivity to initial values. Because of
their desirable properties, chaotic oscillators have repeatedly found
their way into sound synthesis research and musical practices [1}
213114115116} [7, 181 19] and recently has found a renewed interest with
in the context of live musical performance [10].

Despite this longstanding interest, there are a number of areas
which are central to understanding chaotic oscillators for musi-
cal use which remain under-explored. Individual chaotic oscilla-
tors are usually studied on specific parameter examples [11] while
making it difficult to predict outcomes under change of parame-
ters. A large set of algorithms that exhibit chaotic oscillation exist
[LO], but their relationship is poorly, if at all, understood. This
makes it difficult to chose oscillators with intention.

In live music performance, the ability of the musician to navi-
gate the possibilities of the sound synthesis algorithm can be criti-
cal. This relationship of synthesis parameters to performer control
is recognized as a central problem in musical instrument design
known as the mapping problem [12]. However the mapping rela-
tionship in this case is complex, calling for strategies that support
the performer’s ability to have a sense of predictability of the per-
formance choices made.

Copyright: (© 2019 Georg Essl et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 Unported License| which permits
unrestricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

The purpose of this paper is to propose a framework for mak-
ing the relationship of parametric choice and sonic outcome of
chaotic oscillators accessible visually. More specifically, in this
paper we propose perceptually motivated parametric planes (some-
times also called “atlases” [13]]). These are parametric spaces
which visualize features of the chaotic oscillator over a range of
performance parameters. The visual space helps us understand de-
pendence of parameters to outcomes, and the selection of features
allows us to probe different aspect of the outcome potential.

2. RELATED WORK

Visualizations have long played an important role in the study of
nonlinear oscillators. Perhaps closest to our proposed approach
are two forms of visualization: (1) Arnold Tongues [14] and (2)
Spectral Bifurcation Diagrams [15,[16]].

Originally, Arnold tongues referred to stability regions of the
circle map rendered as a plane with linear frequency {2 of the map
as one coordinate, and increasing nonlinearity & as the other [14].
Since then, Arnold tongues have been more broadly referred to as
regions of stability representing mode-locking in chaotic dynam-
ical systems in general [17, 18} [19] 20} [13]. The literature dis-
cussing aspects of Arnold tongues is, in fact, so vast that it cannot
be sensibly included here. The pervasiveness of this approach to
studying nonlinear dynamics is one of the main motivations of us-
ing it as a starting point for our proposed approach. This should al-
low comparison to the vast existing body of research on nonlinear
oscillators. Our proposed work can be understood to generalizing
the parameter planes of Arnold tongue to depict behavior that is
perceptually motivated in nature and in particular studies the use
of spectral content.

Spectral Bifurcation Diagrams constitute another visualization
approach for nonlinear phenomena proposed in the context of study-
ing their acoustics [15| [16]. They are rendered by drawing the
short-time spectrum of the iterative map with increasing iterative
steps. Hence it is a method for depicting the onset of chaos over
time within an oscillatory system. Our approach also uses spectral
content. However, we are looking for different parametric rela-
tionships, and primarily those useful for control changes.

Within the realm of musical use of chaotic oscillators, this
work is related to recent proposals to modify chaotic oscillators by
injecting delay lines to make them more friendly to control by mu-
sical performers and the associated emergence of a large number
of proposed nonlinear oscillators [10] . However, our understand-
ing of the detailed aspects of the effect of delay lines to diverse
nonlinear oscillators as well as the relationships and differences
between these oscillators is currently preliminary. Our work looks
to provide a concrete framework to study nonlinear oscillators for
musical use and supplement their performance visually, hence is
intended to help us systematically probe these open questions.
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Figure 2: Visual representations of a nonlinear oscillator depicting intermediate steps of constructing parameter planes: (a) Circle Map as
example of an iterative map, (b) projection of the map into a time series, (c) amplitude spectrum of the time series, (d) spectrogram of
the time series over increased nonlinearity k with fixed linear frequency €2, (e) parameter plane computing the PeakSparsity feature over a

range of 2.

3. CIRCLE MAPS AS NONLINEAR OSCILLATOR

While the proposed framework is not limited to a specific nonlin-
ear oscillator, a concrete example will facilitate the discussion of
the method. For this reason we will utilize circle maps [8 [11].

The most general form of circle maps refers to all mappings
from the circle to itself [8]. Here we will restrict this to a pertur-
bative form of the linear oscillator defined as follows:

k
Yn+1 = <yn +Q- %f(yn)) mod 1 (D

Here f(-) refers to a nonconstant function that reflects a chosen
type of nonlinearity. k is the strength of the nonlinearity. If & is
0 then the map is linear. €2 is a linear increment on the circle and
reflects the distance traveled by a linear oscillator for one time step.
yn, i the iterative position on the circle. yo is an initial value of the
position. Technically the circle map hence has three parameters,
Q, k, and yo. Finally the choice of the nonlinear function f(-)
provides a further source of variation. One of the most widely
studied circle map uses a sine function (equation (7)) as nonlinear
perturbation and we will call this particular instance of the circle
map the sine circle map [21]. In Figure@ successive iterations
of a sine circle map are connected by straight lines.

3.1. Choice of Projection

There is no set way to arrive at a time series from an iterative map
such as the circle map. For our purpose, we follow [§] and define
a projection p(+) onto an orthogonal axis:

P = sin(27yy) 2)

This choice of projection is justified because it mimics the projec-
tion used to construct a linear discrete sinusoidal oscillator from a
phase function. In this case a constant increment €2 in the phase
yields a sinusoidal output. Hence we can interpret the circle map
equation () as an iterative nonlinear phase function, where £ cor-
responds to the constant phase increase of a linear oscillator, and
where k corresponds to the strength of a nonlinear contribution
7 () to phase change.

It is important to note that this choice of projection is arbitrary.
One could use cos or in fact any other orthogonal projection of the
circle for p(-). One could also simply interpret the y,, as time se-
ries. A wide range of further choices are also possible. We do be-
lieve that the sin is a natural choice as yo = 0 corresponds to a zero

phase sinusoidal oscillation, and because it allows the interpreta-
tion of the circle map as a one-parameter nonlinear perturbation of
a linear oscillator, hence grounding the map in a well-understood
base configuration.

This particular justification is specific to this nonlinear dynam-
ical system, and other dynamical systems may justify different pro-
jection functions.

4. PARAMETER PLANES AS FRAMEWORK FOR
ANALYSIS

For the purpose of this paper we refer to parameter planes as two-
dimensional visual renderings of behavior of a sound synthesis al-
gorithm under the variation of two control parameters. This is dif-
ferent from other dense visual renderings such as a spectrogram,
where typically the coordinate parameters are not necessarily di-
rectly related to control parameters, though the content of the vi-
sualization may well be responsive to parameter changes.

Assume any synthesis algorithm with two or more control pa-
rameters. The parameter plane would be the rendering along two
control parameters (or combinations of control parameters that re-
duces their number to two). The local visual content is the output
of the synthesis algorithm reduced by some feature process to a
one-dimension that is then rendered as color gradient. Hence, pa-
rameter planes constitute the relationship of control parameter to
some feature-specific output.

A pertinent established example of a parameter plane in the
study of nonlinear oscillators are Arnold tongues. Arnold tongues
are rendered by varying the two control parameters (€2, k) of equa-
tion (m) or comparable comparable parameters of other nonlinear
oscillators. The local feature traditionally used are winding num-
bers, which allow for the classification of the type of winding, and
was used to discover mode-locking for mild nonlinearities in non-
linear oscillators [[14].

Our proposed use of parameter planes can be understood as a
generalization of Arnold tongue planes, but with the computation
of the local value changed from the winding number to some other
local feature of interest that is more suitable for understanding of
audio properties.

The overall process through intermediary steps is depicted in
Figure 2] We are given a nonlinear oscillator (Figure PJ@)). The
choice of connecting the nonlinear oscillator to a time-series (Fig-
ure[2(B)) that is taken to be a sampled audio signal is not obvious.
Hence we require a choice of function (projection) p(-) that es-
tablishes this relationship. Over a certain range of time-steps, we
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compute local features. In our examples all newly introduced local
features are spectral in nature, hence we compute the FFT (Figure
PIc)). It is important that this and the next step are flexible. One
could choose a non-spectral feature (such as zero-crossings). In
the spectral case, one can compute a further intermediary step of
arranging a spectrogram over one control parameter (Figure P{d)).
This step is also not strictly required but we found it to be a very
useful intermediate visualization to probe aspects of spectral evo-
lution under parameter changes. Finally, a feature mapping D(-)
derives from the spectrum a one-dimensional local representation
that is arranged into the plane (Figure P[e)) over the control param-
eter which we label here k& and €2 for consistency with our chosen
example of the circle map (section [3).

The specific aspects that are of interest for investigation and
performance dictate further choices in this process. Oscillators
can have initial transients. While these can be interesting subjects
on their own right, for the purpose of this paper we have sought
to capture steady state behavior. For this reason all figures in this
paper, unless otherwise noted, compute the first 1000 iterations
without consider them for rendering’| The length of the time series,
and the size of the FFT are further choices that can impact fidelity
of the rendering and the information that will be drawn out. The
following process was used to compute spectral information: A
fast Fourier transform (FFT) was performed with a length of 8192
bins. Time series intervals were rendered for half that length and
zero padded. The signal was weighted using a Blackman window
function. Only the amplitude spectrum was considered. Neighbor-
ing bins were averaged to reduce the number of bins to the figure
widths rendered in the paper (300 points). All aggregate feature
computations were computed on the 300 bin averaged spectrum to
create maximum relation between visual representations of spec-
tra, spectrograms, and parameter planes. We do not propose this as
a necessary aspect of the process. In other applications it may be
desirable to compute feature on larger (or smaller number of bins).

Finally, a color gradient is chosen to render the one-dimensional
feature D. This relationship can be linear or be further modified
by a transfer function. It is common to use the logarithm on one-
dimensional audio measures. In this paper all figures based on
spectral information were color rendered on a logarithmic scale,
normalized to the range of the color gradient.

Figure shows the chosen color column to the right. The
normalized color gradient ranged from zero to one and is com-
posed of four equal intervals of length 1/4. It is computed as linear
interpolation of RGB colors black (0, 0, 0), blue (0, 0, 255), green
(0,255, 0), yellow (255,255, 0), and red (255, 0, 0). Hence black
reflecting a value of 0, pure green reflecting a value of 0.5, and
pure red reflecting a value of 1. For spectrogram computations
we replaced black with white to achieve a white background look,
with the color gradient otherwise unchanged.

Our Java implementation of the process for all features dis-
cussed in the next section took between 30 seconds to a few min-
utes depending primarily on the spectral window size used. In
order to facilitate interactive use (for musical purposes or in inter-
active demonstration) we stored the resulting array of features in a
file for instantaneous recall.

11000 was chosen after it was observed that this was sufficient to cap-
ture rare long transitions in parameter ranges of interest. The vast majority
of transitions are very short and do not exceed just a few steps.

5. LOCAL FEATURES

A key component of computing parameter planes is finding local
features that fill the plane to inform about the underlying behav-
ior of the synthesis algorithm at a parameter point (€2, K'). The
choice of this local feature carries reduces all of the behavior of
the synthesis algorithm to a number, with the goal for this number
to represent information of interest. By spanning a plane that al-
lows one to inspect the evolution of local behavior under parameter
change.

In order to understand that choice of feature we first discuss
a widely established example in the study of nonlinear dynamical
systems, which will motivate why we need more measures to study
the sound of these systems.

5.1. Winding Numbers and Arnold Tongues

The construction of Arnold tongues is an example of a parame-
ter plane visualization. Arnold tongues are areas in the parameter
plane which exhibit mode locking [14} 17} [18| 22} 23|| as well as
provide a range of information about the transition into chaotic
regimes. The winding number W (interchangably also referred to
as rotation number [[18]]) is the local feature used for their con-
struction. Given an iterator producing incremental states y,, the
winding number W is the average long-term map increment, hence
describes the long-time average phase of the map. For iterations
that are not subject to periodicity induced by modulo operations,
they can be computed as [8]]:

W= lim 2% 3)
n— 00 n
In practical computation the length of winding n is finite but suffi-
ciently large to overcome initial transients. We chose 1000 for our
depictions of Arnold tongues throughout this paper, matching our
assumed maximum transients.

Computing the winding number over parameters of nonlinear
oscillators led to the discovery of mode-locking (though phase-
locking [24] is probably a more precise term in the case of the
circle map). With mild increase in nonlinearity one finds that non-
linear oscillators tend to form areas of constant winding number
even though the underlying parameters are changing. If depicted
as a function of constant nonlinearity these form a staircase shape,
which have been called “devil’s staircase”. When plotted over in-
creasing nonlinearity, the family of devil’s staircases widen, form-
ing tongue-like shapes in the plane. We see depictions of Arnold
tongues for the sine circle map in the bottom part of Figure
For low nonlinearity £ < 1 we observe that widening regions of
locked modes occur.

As we will see, Arnold tongue-like properties are very persis-
tent features, even if we change the local feature we are computing.
However, the winding number is still not a great feature to use to
study sonic qualities of nonlinear dynamics. The winding num-
ber following equation can be interpreted as a very-long-time
averaged behavior of the state of the dynamical system. In fact,
the equation can be formulated such that it is identical to the com-
putation of the mean with the length of the mean being extended
to infinity [24]. From this we observe that the winding number
does not capture more localized properties of the dynamics, such
as local periodicity, short-term spectral changes and so forth. Fur-
thermore, given that we project the circle map into a discrete sine
oscillator, giving us the interpretation of a phase function, we re-
alize that the winding number here is really the long-term average
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(a) Winding Number (b) MeanBalance

Q

(d) Entropy
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Figure 3: Comparison of features computed in the parameter plane: (a) winding number (Arnold Tongues), (b) Spectral Mean Balance, (c)
Spectral Peak Sparsity, (d) Spectral Entropy. (top) k& = [0, 13.3) (bottom) & = [0, 1.33) Arnold tongues use black contours to emphasize

mode-locking transitions.

phase. While the precise response to phase in sound is a compli-
cated phenomena, and it can play a role in specific settings [23]],
our ear generally does not associate perceptible qualities to phase.
Hence a feature that primarily looks at phase is not the best feature
to consider unless one is trying to capture very specific effects.

There are numerous aspects of iterative maps that could re-
place the winding number. For example, one can compute initial
transient times by computing the winding number incrementally
and checking when the computed winding numbers of successive
steps fall below a value €. The iteration count n then provides a
measure of the duration of the transient. One can also probe for
other mathematically interesting properties such as fixed points
[11]. These would correspond to DC signals and help identify
regions of silence, which is easily captured as part of richer and
more broadly descriptive features.

5.2. Perceptually Motivated 1-D Features

Understanding the results of a synthesis algorithm is eminently
perceptual, motivating the need for visual guidance of complex
synthesis methods to predict perceptually interesting aspects of the
expected sonic outcomes.

Perceptual cues are a particular form of features derived from

audio time series. A wide array of audio features have been pro-
posed [26] for they play important roles in all forms of audio anal-
ysis, including in creating meaningful starting points for machine
classification. The body of audio features are dominated by needs
of understanding human vocalization and musical signals. While
nonlinear oscillators produce resonant spectra quite well suited by
this body of work, especially at higher nonlinearities the sounds
exhibit a range of differing noisy outcomes [11]]. The literature
dealing with noise is substantially smaller [27, 28]. This may go
along with our understanding of human sound perception having
substantially more detailed results for resonant spectral content
than otherwise [29]. For the purpose of presenting the method,
we were looking for features that would give clear visual differ-
ences over the same parameter space. After initial experimenta-
tion, we decided to present here three features that we believe to
have a particular motivation given the output of nonlinear oscilla-
tors. Nonlinear oscillators have a range of effects: At low non-
linearities they tend to behave similar to wave shaping [8] in that
the nonlinearity introduces spreading resonant spectra. At higher
nonlinearity complicated noise-like patterns can emerge. Hence
we were interested in features that could carry information about
both resonant and noisy content.
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Figure 4: Arnold Tongues (winding numbers) of the sine circle map for initial values yo = 0.0, 0.25, 0.5, and 0.75.

5.2.1. MeanBalance Feature

The MeanBalance feature is quantifying if a spectrum is domi-
nated by contributions that lie above or below the mean of the
spectrum. The intuition is that a flat but noisy spectrum will be bal-
anced with respect to the number of values that lie above and below
the mean. For a spectrum of distinct and sparse narrow peaks, most
values lie below the mean due to the sparsity of the peaks. A spec-
trum characterized that occasionally dips in the spectrum would,
conversely, have most values lie above the mean. More precisely,
the feature is computed as:

N e
1 0, if cisfalse
mean = ngzl fn Xlc] = {

1, otherwise

N N
b:ZX[b>mean] a:ZX[b<mean]
n=1 n=1
b/a ifa>0
Dy =<1 ifa=0andb=0 “4)
b otherwise

mean is the customary mean over all FFT bins f,,. b is the count
of FFT bins that lie below the mean of the spectrum, and a is the
count of FFT bins above the mean of the spectrum. If ¢ = 0, we
define Dy = b. If all bins are equal to the mean Dyvp = 1.

We expect Dyg to return high values for sparse peak spectra,
return average values for flat spectra, and return low values for
spectra with occasionally dips.

5.2.2. PeakSparsity Feature

The PeakSparsity feature takes an integral approach to estimat-
ing how peak-dominated a spectrum is. The core idea is that the
area underneath the spectrum, characterized by the mean, can be
arrived at in various ways. If the spectrum is peaky, we expect
that there is more area under a peak. Hence high peaks will oc-
cupy more of the area than a flat spectrum. The spectrum sorts the
peaks in the spectrum and then counts how many sorted bins are
needed to arrive at the mean. If lots of area in within a few very
high peaks it will take only a few bins to reach the mean. If the
spectrum is flat, we expect to have to count all bins to arrive the

mean. Hence PeakSparsity is a measure of sparsity peaks in the
spectrum. It is computed as follows:

n
area,, = Z sortyy, (f) sort,, (f) are sorted FFT bins
m=1

o = 1 if 37 _ area,, < mean
0 otherwise

N
Des=3 cn ®)
n=1

5.2.3. Spectral Entropy Feature

Spectral entropy [27] is the computation of the Shannon entropy
over all FFT bins:

1 N
Dgy = _@ nz::l fnlog(fr) (6)

fn are the FFT bins and N is the number of bins up to half Nyquist
frequency. Description by Shannon entropy leads to information-
theoretic interpretation of the measure. High entropy corresponds
to the requirement to describe more information content. Hence
it is a kind of measure of information-theoretic complexity of the
spectrum. We expect sparse spectra to contain less information
than dense spectra, but per chance have some information-theoretic
differentiation between different forms of dense spectra.

6. PARAMETER SPACES FOR CIRCLE MAPS

We are now ready to proceed to give concrete illustrations of pa-
rameter planes using these chosen features on variations of the cir-
cle maps introduced in section[3]

6.1. Comparisons of features

Figure [3] compares different choices of local features computed
in the (€2, k) parameter plane for the sine circle map. The figure
shows both a weak nonlinearity regime (k € [0,1.7)) in the bot-
tom row as well as a strong nonlinearity region (k € [0,17)) in
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the top column. We include the winding number as classical local
feature on the left.

Mild nonlinearity: Each of the four illustrated features highlight
very different structures in the very low nonlinearity regime k& €
[0,0.3). The winding number does not show the emerging reso-
nant spectral aspects that emerge in this region. Specifically the
PeakSparsity feature shows an overall increase in resonant peaks
with additional fine structure. While Entropy displays a different
structure than any other feature it shares with the winding number
the lack of detail in this very mild nonlinearity regime.
nonlinearity near invertibility: The sine circle map becomes non-
invertible at £ > 1 [8]]. This point is marked on the k-axis with a
red marker. We expect more pronounced nonlinear effects to occur
after this point, and early cascades into chaos are possible. Overall
we see that both the MeanBalance and the PeakSparsity measure
show substantial fine structure in the region k& € [1,1.33). While
the winding number exhibits a lot of structure it does not align well
with these transitional properties. Entropy shows little change un-
til chaos onset, when we see a smooth transition.

Persistent macroscopic properties and their variation: Arnold
Tongue shapes are visible with all chosen features which make
them very robust properties. This means that they do not merely
correspond to mode-locking, but also have spectral and entropic
effects. Unsurprisingly, fixed point regions (crossing diagonal re-
gions) can be identified with all features as they correspond to con-
stant value, and DC component spectral content. It is noteworthy
however that the Entropy feature provides additional information
in fixed point regions because it differentiates information content
by the level of the DC component. These feature as not percep-
tually relevant, suggesting that unmodified entropy may not be an
ideal feature for perceptually motivated modeling.

Strong nonlinearity: For a parameter range of £ > 1 chaotic be-
havior, potentially interspersed with fixed-point regions, that then
re-cascade into chaos, are dominating the behavior of the sine cir-
cle map for all features. Here the winding number presents the
most diversity in value ranges, but is poor at resolving some visible
trends that emerge using the other features. There are some subtle
differences which of these trends are highlighted how strongly be-
tween MeanBalance, PeakSparsity and Entropy. For example us-
ing Entropy we see trend lines at the half-way point between fixed
point diagonal regions. MeanBalance shows more structure that
follows central fixed point and stability regions around 2 = 0.5.

6.2. Initial Value Sensitivity

As illustrated on a number of examples [[L1], the circle map ex-
hibits initial value sensitivity, a feature that is known to be typical
of chaotic systems, and a widely propagated narrative in popu-
lar culture involving butterfly wings. While known examples [[11]
make clear that observable and clearly perceptible differences due
to initial value differences can occur through the parameter plane,
inspection of the parameter plane allows us to look for initial value
effects more broadly. Arnold Tongues exhibit initial value sensi-
tivity as discernible differences in the plane, in particular in areas
that approach recurrent chaotic regimes, as well as in the behavior
of crossing fixed point regions.

Figure [ exhibits this effect. We see that for increasing initial
values, certain regions change. With respect to fixed point regions,
we see that for initial values below 0.5, one side overlaps the other,
while this directionality is flipped for initial values above 0.5.

In order to understand if these differences are perceptually rel-

0.0] 0.0/

(a) (b)

00 / ) .

0.0 Yo 1.0 0.0 Yo 1.0

(c) (@

Figure 5: Four nonlinearities functions explored: (a) Sine, (b) Tri-
angle, (c) Piecewise linear cardiorespiratory coupling model [20]],
(d) truncated Fourier-series. Figure from [11].

evant, we observe initial value conditions on a perceptual feature
instead of the winding numbers used in Arnold tongues (Figure[3).
We see that the features at the top end of fixed point diagonals in
the winding number plane is not captured by any of the other mea-
sures. Some of these effects can perceptually be treated as phase
effects and hence are not usually perceptually relevant. Mathe-
matically they do not appear in our features due to using only the
amplitude spectrum.

7. VARIATION OF NONLINEAR FUNCTION

To explore the impact of the variation of the nonlinear function
f(-) we use four exemplar functions discussed in [L1]]:

f(yn) = sin(27yy) ™
4-yn if0§y7z<1/4
flyn) = (1/4—yn) - 441 if1/4 <y, <3/4 8)
(yn —3/4) -4 —1 otherwise.
{ et if0 < yn < B
w22 T i p <y, < 1T
flyn) =9 puidr ™ : ©)
1+2.eT if1-T<y,<B+1
=2 T2l Gtherwise.
1 4
flyn) = 1 am Sin(2rmyy) (10)
m=1

With 7' = 0.5, € = 0.25and B = 0.5+ (¢ — 1) - T in (9) and
with a,, = {1,2%,3%,4%} and A = a1+a2+a3+a4in.
Equation (8) is a triangle function. Equation (9) is a piecewise Tin-
ear function from the biomedical literature [20] and equation (T0)
is a Fourier-series composition with four terms. The functions are
shown in Figure[5] The variation of nonlinear function is depicted
in Figure [6] using the PeakSparsity feature. Obviously the varia-
tion of the nonlinear function has substantial large scale impact on
the response, though Arnold tongue-like features are persistent in
all cases. For the continuous piecewise linear (triangle) function,
we observe a well-known effect of tongues pinching together with
increase nonlinearity. This effect has been called "Sausages" [30].
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(a) Sine

(b) Triangle

(c) Cardiorespiratory (d) Fourier

Figure 6: Variation of nonlinear perturbation function in the circle map using the PeakSparsity spectral value in the (k,$2)-plane (top)
mild nonlinearity with k& € [0, 1.33) (bottom) strong nonlinearity with k£ € [0, 13.3) (a) sine, (b) continuous rectilinear, (c) discontinuous

rectilinear, (d) mixed three sine.

The asymmetric non-continuous piecewise linear case (cardiores-
piratory model) shows that symmetry can be broken as well as
that fixed point regions can be very substantially extended. Some
of this behavior can be explained by understanding occurance of
fixed points by the slope of the function against an intersection
with the identity map y, = yn+1 depicted in Figure[5]as a red di-
agonal line. If the angle is shallow it creates fixed points. For the
triangle case we observe no fixed points due to the choice of slope,
while in the cardiorespiratory case we see an abundance of fixed
points for the choice of slope and intersection with the identity.
Overall we note that while there are persistent structure between
nonlinear function, the choice of nonlinearity plays a substantial
role in the sound of a chaotic oscillator. This suggests that the
study of their variation is an interesting subject of further investi-
gation.

8. CONCLUSIONS

The study of chaotic oscillators is an extremely rich topic ripe for
long-standing research. The proposed framework described in this
paper offers a strategy to further our understanding of their behav-
ior for sound synthesis.

The present framework is applicable to many more cases than
the ones discussed in this paper. A comparative analysis of wave
shaping, modulation techniques, feedback, and circle maps is forth-
coming [31]]. Yet a detailed study on a wide range of chaotic os-
cillators [10] would help crystallize criteria for picking algorithms
and their respective similarities and differences.

The parameter space itself could be subjected to further anal-
ysis. For example, similarity measures could be applied to
related different points and regions in the parameter plane and
hence provides a form of reparametrization that replaces paramet-
ric closeness with perceptual closeness.

Finally feature discovery and a deeper understanding of the
perception of differing noisy sounds are key aspects that can help
us get further understanding of nonlinear oscillators. We see the
use of feature discovery by maximum discrimination as a promis-
ing strategy for detailed study of existing features [33]] and also as a
possible pathway towards understanding what aspects of the signal
are poorly captured by the current feature landscape. Deepening
our understanding of perception of noise is less straightforward
and will require new perceptual experimentation with novel mod-
els ideas about what could constitute perceptually relevant mecha-
nisms that discriminate difference versions of noise.
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