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ABSTRACT

We apply modal synthesis to create a virtual collection of crash
cymbals. Synthesizing each cymbal may require enough modes
to stress a modern CPU, so a full drum set would certainly not
be tractable in real-time. To work around this, we create a GPU-
accelerated modal filterbank, with each individual set piece allo-
cated over two thousand modes. This takes only a fraction of avail-
able GPU floating-point throughput.

With CPU resources freed up, we explore methods to model
the different instrument response in the linear/harmonic and non-
linear/inharmonic regions that occur as more energy is present in a
cymbal: a simple approach, yet one that preserves the parallelism
of the problem, uses multisampling, and a more physically-based
approach approximates modal coupling.

1. INTRODUCTION

Modal synthesis is an effective way of capturing a variety of phys-
ical sounds. Its parameters are intuitive and have a space-efficient
representation. Parameters may be computed by solving the equa-
tions governing the system, analytically from a series of system
measurements or instrument recordings, or by combining or mor-
phing between other instruments’ coefficients.

Increasing the number of modes /N of our synthesizer is im-
portant to broaden the types of sounds we may represent. A cow-
bell may be synthesized with a few dozen modes, but qualita-
tively, a cymbal wash benefits from hundreds or even thousands
of modes. Compare the whole-sound spectra of a cowbell against
that of a cymbal in Figure[T] To see behavior over time, the spec-
trogram of a Sabian 16” HHX Evolution Crash, a relatively “dark”
or "complex” crash, is shown in Figure 2} We note evidence of
highly nonlinear effects, such as higher frequencies emerging in
the 100ms-300ms range. These cannot be simulated directly with
our basic linear modal synthesis method, but we will explore meth-
ods that attempt to obtain such sounds by extending our linear syn-
thesis system with approximations.

In addition to having a complex sound with many modes, thin
shells exhibit highly nonlinear behavior, with response often di-
vided into three regimes: linear, inharmonic, and chaotic. This
makes creating accurate physical models difficult[1} 12} 13]], though
the sounds and control space are rich.

Ducceschi et al.[4] solve the von Kdrman equations that gov-
ern the underlying nonlinear plate physics of plates and cymbals in
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Figure 1: Top: Cowbell spectrum. Bottom: Sabian HHX Crash
Cymbal Spectrum. Note the latter has a significantly higher den-
sity of modes, while the former can be better represented by a
smaller number of local maxima.

terms of the system’s modes. They obtain values for coupling co-
efficients offline, yet efficiently. In [S]] the authors extend this work
and apply a simpler, though less inherently stable, Stérmer-Verlet
method for time integration to obtain synthesis results running
fairly quickly—only 8x slower than real-time on a CPU. Nguyen
et al. [6] use a similar time stepping method to cymbal synthesis,
paying particular attention to specific cymbal geometry variations
that is relatively unique in the literature—cymbals are not plates of
uniform thickness, but vary from bell to inner bow to edge, and the
authors demonstrate this is an important property to model when
considering cymbals over gongs.

Our end goal is to run simulation of several cymbals in re-
altime with enough processing power left over for the rest of a
drum set and the other instruments. GPU acceleration is attractive
for this application—using the single instruction, multiple thread
model of execution, modern graphics processors excel at execut-
ing one piece of code simultaneously across tens, hundreds, or
even thousands of threads, each performing the same operations
on different data. This is a more parallel version of vector instruc-
tions, and while it is not applicable to every application (handling
one input through a series of connected effects plugins, for exam-
ple), there are some audio applications where it excels. In [4] for
example, Ducceschi et al. reduced computation time from 90 min-
utes per second of audio on a desktop CPU down to 55 seconds
per sound. And we again emphasize their work is physically accu-
rate while our work here will aim for simpler approximations for
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Figure 2: Sabian HHX Evolution Crash Spectrogram.

cymbal-like sounds.

The literature has several projects involving GPU-Accelerated
additive synthesis or massive parallel filtering:

Savioja et al.[[7]] give an overview of potential audio tasks that
may be accelerated via GPGPU programming at audio rate and
reasonable buffer sizes for real-time performance. For example,
FFTs running on a GPU were able to be eight times as long as
their CPU-implementation counterparts. GPU-accelerated FIR fil-
ters were able to be 130x as long as the baseline versions. In [8]],
the authors synthesized 1.9 million sinusoids in real-time, a 1300x
speedup over a serial lookup table computation on one CPU. This
was on a GPU that is six generations behind ours and three major
GeForce architecture revisions behind the card we are using, and
we note that our card is itself a generation behind state of the art.

Trebien et al.[9] use modal synthesis to synthesize physically-
accurate collision sounds between objects of different materials —
balls rolling down a ramp, for example. They introduce a trans-
form of the system’s IIR filters to be able to compute several sam-
ples in parallel, turning the operation into linear convolutions that
are well-suited for a GPU. More recently, Cirio et al.[10] tackle
this problem with specific attention on cymbals and gongs, and in
particular attempt to model the chaotic and wave-turbulent effects.
This work leverages parallelism between frequency bands as one
strategy to parallelize, and as they simulate nonlinear effects in
a more physically-accurate fashion than we will, they obtain rich
sounds with only 100 high-frequency modes. Simulation costs for
one cymbal are still 43x slower than real-time, but that is a 70x
speedup over their target algorithm, making the approach tractable
for generation audio to graphics offline. Chadwick et al.[T1]] also
apply modal strategies, including simulated coupling, plus intro-
duce far-field acoustic transforms, for such “virtual foley” work.
Collisions of thin shells including water bottles and crash cymbals
sound realistic. Simulation and precomputation are expensive, but
the runtime acoustic transfer map step runs relatively faster, at 16x
slower than real-time.

Belloch et al. [12] apply a transform on IIR filters to make
them more suitable for the GPU. At 44.1kHz they run over 1,200
256th-order IIR filters simultaneously, with latency of less than a
millisecond. Subsequently, Belloch et. al apply massively paral-

lel filtering[[13]] to Wave Field synthesis on a 96-speaker array[[14],
running nearly ten thousand fractional-delay room filters with thou-
sands of taps. Several dozen sources were able to be placed into
the field.

Bilbao and Webb[13]] describe a GPU-accelerated model of
a set of timpani, simulating both the drums as well as the space
outside. They obtain speedups of 8x to 30x over CPU implemen-
tations, and the drum update runs in near-real-time (2 milliseconds
per sample), with the bottleneck being a linear drum membrane
update.

With advances in machine learning and deep learning fields,
some groups are using GPUs to train models that output audio
during inference, an interesting approach different from physical
modeling. The convolutional WaveRNN by Kalchbrenner, Elsen
et al.[T6] can run inference (generation) even on mobile CPUs.

The physical modeling applications mentioned above often ex-
ploit parallelism across time — different GPU threads are simulta-
neously working on z(t,,) and z(¢,+) for small k. This is often
the result of a clever transform, for example moving IIR filters to
parallel form. In our application, we’d like to retain the option to
modulate system parameters based on a signal we are fed sample-
by-sample, and unfortunately cannot apply such transforms. In
we demonstrated our modal synthesis filters can be run at au-
dio rates on modern GPUs in a serial fashion—that is, GPU core
speed and FPU throughput have advanced sufficiently in recent
years such that developers do not need to parallelize across time
for certain audio applications (of course, if you can, it still unlocks
a great deal of parallelism). Floating-point throughput on modern
high-end consumer hardware is enough to run over a million such
filters.

Since that work on building blocks and benchmarks, a real-
time GPU filterbank was developed, which we present here and
then leverage toward cymbal synthesis.

2. BUILDING BLOCKS: VERY HIGH-Q PHASOR
FILTERS

We use a modal filterbank for synthesis. This consists of N res-
onant filters. We make the assumption that all the filters are uni-
form in construction and vary in parameters, though a GPU could
run multiple styles of filters in parallel, either through conditional
execution or simultaneous kernel execution.

Modal synthesis may be performed using the developer’s fa-
vorite resonant filter, or via adding sinusoids. In practice, rapidly
changing the coefficients on e.g. Direct-Form II filters may re-
sult in audible artifacts. Adding sinusoids is efficient, especially
if we’re simply performing lookups into a table that’s in processor
cache, but we have a preference for another approach if computa-
tional resources are available.

In [18] Max Mathews and Julius Smith proposed a filter that is
very-high-Q, numerically stable, and artifact-free, based on prop-
erties of complex multiplication. The parameters map one-to-one
with the physical properties of our system which makes it a great
choice for modal synthesis and modal reverberators such as in [19].
The recursive update equation we need to implement is:

Y (1) = yma(t) + V<= (- 1) (1)
where:
() is an input or excitation signal.
wm 1s mode m’s frequency.
~Ym 18 a per-mode complex input amplitude gain.
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Q. is a per-mode damping factor.

In terms of implementation details, the state we store for each
mode is limited to the prior output y.,, (t— 1), plus having the input
parameters available (v, Ym, and wy,). This fact will be relevant
when we walk through the GPU code.

This filter has some nice properties, such as that it preserves
phase across restrikes if parameters are updated on zero-crossings.
‘We next present how we may run hundreds of thousands of them
in parallel.

3. GPU FILTERBANK IMPLEMENTATION

We present a system that has three major pieces across two pro-
cesses. A system diagram is in Figure[3]

e The CPU Client is a JUCE C++ plugin that accepts MIDI
events, translates them into modes, and populates data struc-
tures to facilitate communication to the GPU (modal param-
eters) and from the GPU (audio data to copy to a DAW au-
dio callback buffer). For a set of cymbals, we may copy in a
set of modes that are mapped to a particular MIDI note rep-
resenting that instrument selection. For a tonal instrument
application, modes would be scaled to start on the correct
fundamental frequency.

e The GPU Process contains code to allocate memory on the
graphics card and on the host PC. It copies relevant data to
the GPU and manages kernel execution.

e The GPU kernel is the code that runs on the GPU and rep-
resents the core of the synthesis.

Samples j Offline Analysis | Coefficients File

Modelnfol[]
MIDI VST/AU/etc. Plugin: | (RT Coefficients) | GPU Host Process
Choose responses, Runs on CPU
Audio I/O . Communicates with
(All on CPU) Audio GPU
(1..N channels)

Send RT Coefficients
Receive samples

GPU
Runs Kernel Code

Figure 3: Overall System Diagram. Top: offline components an-
alyze modes from samples. Bottom: real-time system synthesizes
using the proposed parallel architecture.

1
v

Return filled audio buffer to Host

For the sake of discussion, we aim to keep the GPU kernel
code as simple, short, and approachable as possible. Specifically,
it will take as input our modal filter parameters wy, yn, an and
input signal z(), and simply synthesize the resulting audio output.
Later versions may perform parameter interpolation, modal cou-
pling, etc. or post-process audio.

Keeping the GPU process as simple as possible allows much
of the complexity to be moved to an application that calls the GPU
code, enables easy extension to multiple client applications, en-
ables rapid development, and allows for code reuse across projects
as the GPU process will happily run in the background indefinitely
while only taking a few MB of RAM.

Communication between host and GPU processes was accom-
plished using shared memory, and signaling between processes
was done using semaphores. The shared memory is simply a chunk
of memory mapped into each of the two CPU processes. It is a se-
ries of ModeInfo structures as defined in Listing [I] followed by
a chunk of memory to allow transmitting audio data back to the
JUCE plugin so it can in turn be sent back to the DAW or the next
plugin in the chain for more processing. This was chosen for sim-
plicity and speed; the code should compile without any external
libraries beyond CUDA. Other projects may wish to replace the
cross-process communication with, for example, an OSC client
and run the host application on a tablet.

struct ModeInfo {
bool enabled;
bool reset;

// is this filter on?
// should we zero state?

// filter parameters

float amp_real; // Re{alpha}
float amp_imag; // Im{alpha}
float damp; // gamma
float fregq; // omega

// currently-unused optimizations

bool amp_changed; // did alpha change?

bool freqg_changed; // did omega change?
}i

Listing 1: Modelnfo structure used in shared memory block.

Most development and demos were run at 256 samples at 44.1kHz

(5.6ms); a buffer of 128 samples was tested successfully.

Our graphics card is an NVIDIA GeForce 1080Ti; it should
run on some older cards where core frequency and floating-point
throughput are sufficient. It is also expected to run with even bet-
ter performance on the newer RTX series cards. We have not
attempted a port to OpenCL to run on AMD cards, but with a
high enough core speed and floating-point throughput it should
be straightforward. For those interested in CUDA GPU program-
ming, a variety of books are available, and the NVIDIA developer
documentation[20] likely contains all that is required to get started.

3.1. CPU vs GPU limits

In synthetic benchmark settings in [[17], where the entire system is
concentrated on running these filters, we found a GPU could run
over 3.5 million phasor filters at audio rate, or 1.8 million allow-
ing for continuous modulation of filter parameters (requiring addi-
tional multiplications). Porting this test to run on an Intel i7 4770k
CPU core showed the CPU could run just over 3,000 phasor fil-
ters in real-time on one thread, allowing for per-sample parameter
modulation. A synthetic benchmark constructed in FAUST using
alternate building blocks—second-order resonant filters—could run
4,600 filters on one CPU thread.

In terms of real-world use cases, a “cymbal-verb” modal re-
verberator plugin was developed with such a phasor filterbank at
its core; when running inside inside a DAW, at 128 samples, pres-
sured by audio callbacks, with a few other audio tracks plus one
instance of the modal filter effect plugin, overruns happened be-
tween 1600 and 1900 modes, with significant variance. A 2012
MacBook Pro, with a laptop Intel i7 3820QM, suffered dropouts
when synthesizing 1000-1100 modes. The GPU process running
on the desktop alongside the DAW was able to successfully syn-
thesize 100,000 modes, above which we are blocked on a need to
optimize the communication between the processes. We note in
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this case we are utilizing the GPU, while the DAW does not lever-
age that resource. Our GPU resource closest to bottlenecking in
this trial is the 32-bit floating-point units, which debugging tools
estimated at 5.5% utilization.

We note our benchmark parts in this system are slightly mis-
matched: the CPU is a mid-to-high-end 2013 consumer part while
the GPU is the flagship model from its series from 2017, and cost
over twice as much. We also note that the majority of audio plugins
will have a natural affinity for running on a CPU, but highly par-
allel tasks may take advantage from a GPU especially if it would
otherwise sit idle.

3.2. GPU Kernel Code

The code is cross-platform; Linux and Windows used different
APIs for shared memory and semaphores, so we simply guard
platform-specific code with e.g. #ifdef WINDOWS. The GPU
kernel code itself is completely platform-agnostic, however there
are two important limitations as of this writing: first, JUCE sup-
port for VST3 under Linux is under development. Second, CUDA
drivers are not available for MacOS 10.14+. We benchmarked with
the JUCE plugin wrapper, and ran integration tests with a DAW on
Windows.

GPU Kernel code is presented in Listing [3] and is available
online on the CCRMA GitLat] It is commented at the block level
in the listing; the code walk in section[3.4]communicates a higher-
level explanation.

3.3. GPU Programming Considerations

A few notes are provided for readers unfamiliar with GPGPU pro-
gramming to get up to speed for this application. Anyone with
GPGPU experience may wish to skip to the next section.

The code provided here will be executed in parallel by many
threads. Specifically, we may have 10 instruments at 2,000 modes
per instrument, allocate one thread each, and run 20,000 threads
in parallel. In practice, the GPU will run this work in batchesﬂ
but we expect thousands of threads to be active at any time, versus
our CPU which has four physical cores. Each of the GPU threads
is less general-purpose than a CPU thread. There is currently no
out-of-order execution or branch prediction, and arithmetic APIs
are less rich, though still very capable for many applications.

Bundles of 32 GPU threads are called a warp, execute in lock-
step, and have some memory shared between them for fast com-
munication. It is possible to send data across warps, but if we have
subtasks that can be executed with 32 or fewer threads (even in
multiple steps), it might be worth trying to keep communicating
threads inside the same warp.

Memory is allocated on the device (GPU) using a special API
call cudaMalloc that looks similar to malloc. It returns a de-
vice pointer; GPU code can read and write from this location but
CPU code cannot. Sharing data between the CPU and GPU gener-
ally involves copying it to and from, though some API calls exist to

Thttps://cm-gitlab.stanford.edu/travissk/dafx 19-gpu-kernel

2Qur request to execute 20,000 threads exceeds the 3,584 CUDA cores
supported on our GPU. In such cases, the GPU will schedule warps on
streaming multiprocessors as they become available, so our work is ac-
tually run in smaller parallel batches rather than fully parallel. Further-
more, this code will bottleneck on the availability of floating-point units
and threads will compete for that resource as well. However, from the
calling code’s perspective the kernel executes as one unit of work.

simplify this or even hide latency. Our host code uses the original
cudaMalloc for simplicity and greatest compatibility.

GPU programming is often an interesting puzzle of how to
best utilize the resources of the device. For example, we have
a very small number of extremely fast registers, a few kilobytes
per thread of fast memory, and access to slow, but plentiful RAM
(11GB on our card). Different cards may execute different num-
bers of single- and double-precision floating point arithmetic; in
particular consumer cards tend not to have strong FP64 perfor-
mance.

NVIDIA provides documentation for more details, and also
provides development, debugging, and profiling tools for Eclipse
or Visual Studio to help maximize performance.

3.4. Code Walk

First, we remember the GPU kernel code is launched, executes,
and returns to the host, and will be rescheduled again for the next
audio buffer where it is launched and returns. It may or may not
execute on the same streaming multiprocessor as it did the previ-
ous iteration. Perhaps some cards may zero memory to prevent
data leaks. And for high numbers of modes we can be sure that
this assumption can’t hold, because we have more threads than re-
sources available. We can’t depend on our state to be kept for us.

Our first task, therefore, is to decide how to save and restore
the state of the system across executions. Recall that from the de-
scription of these filters in Section[2]that the filter’s state is limited
to the prior complex output, so our state is a mere 64 bits per filter:
two 32-bit single-precision floats to make up a complex number.
We store these sequentially in global memory,

RoSoR131.. RNv—18Nv—-1.

The first few lines instruct each thread to determine which
mode m; € [0..N] it is responsible for computing. blockIdx
and similar are local variables provided by CUDA so each thread
may orient itself in the world in terms of the parallel problem the
developer has written.

The next lines load state in from global memory. If we had
no prior state this will be garbage, so there is a bool reset
flag that allows for easily reseting the filter state to zero; useful for
this case but also useful if we are for example switching between
presets in a plugin.

Note that accessing global memory tends to be slow; in the
digital waveguide acceleration portion of [[17] we found we would
be limited in applications if we had to access main memory to read
and write each sample at audio rate speeds—but here we just need
to load the state once.

Next, all the input for this mode m; is available as the ith
ModeInfo structure. We use this data to perhaps update the inner
exponential term for the filter. Versions of the code where vy,
or a,, could be modulated on a per-sample basis would require
moving this computation inside the loop.

Next, we loop to compute our audio data sample-by-sample.
The complex math is provided by the CUDA library, with the ex-
ception of cexpf which needed to be written; it’s provided in
Listing[2] or in the GitLab repository.

_ _device__ _ forceinline_
cuFloatComplex custom_cexpf (
cuFloatComplex z) {
cuComplex res;
float t = expf(z.x);
sincosf(z.y, &res.y, &res.x);
res.x *= t;
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res.y x= t;
return res;

}

Listing 2: cexpf implementation

We sum the newly-computed sample across all threads in a
warp and write this to our output buffer; some applications may
also wish to sum across warps especially if using hundreds of thou-
sands of modes.

Our computation is done; there’s nothing to clean up but we do
need to write our new system state back to device memory so it can
be read by the next kernel execution. Then, the function returns,
our host code stops waiting, it can sum audio data generated by
each warp, copy it back to shared memory, and notify the plugin
in the DAW process that computation has finished.

Next, we consider how we may use all these high-Q filters.

4. EXTENDING MODAL SYNTHESIS

4.1. Baseline: Implementing Linear Models

Using the GPU filterbank, linear modal synthesis is straightfor-
ward.

First, we compute modal frequencies and decay rates offline
and on the CPU. An offline analysis script trimmed sounds to sev-
eral seconds, then computed DFTs of a second or more, and used
these to compute modal coefficients and decay rates. This step
is not time-sensitive, but did complete faster than real-time. This
analysis step may also be performed at runtime, for example im-
porting a user’s samples, substituting an approximation algorithm
if speed is of the essence.

The modal coefficients are stored in a file on disk. A directory
with recordings captured from over a dozen cymbals is loaded into
memory of the JUCE plugin on launch. The user may assign dif-
ferent cymbals to different MIDI notes; this is done by copying
mode data from the appropriate file into ModeInfo structures in
shared memory; the data files are small and memory-mapped so
this operation is fast.

The plugin’s process method is called for each audio buffer.
If it detects MIDI notes that are assigned instruments, we feed an
excitation signal based on the input velocity into the instruments’
input signal shared memory buffe:

Then, the GPU processes enough samples to fill our audio
buffer. Sample data is copied from the GPU’s onboard memory
to the RAM inside the GPU process, to shared RAM, which the
plugin will read and copy back out to audio buffers.

Qualitatively, this approach works very well for bar percus-
sion, cowbells, etc. where we have clear, exponentially decay-
ing modes. With enough modes allocated, cymbal tails sound
somewhat realistic. While the cymbal attack is instantaneous, and
clearly lacks the interesting “bloom” as we move from linear to
nonlinear regimes, a high density of modes bring about qualitative
time-varying behavior from beat frequencies and adjacent frequen-
cies having different decay rates. Noting the attack is limited by a
linear modal synthesis model, we explore a couple ways to intro-
duce nonlinear approximations.

3as in the GPU code description, we could alternatively just send a

note-played signal and leave the GPU to handle articulations

Frequency {Hz)

4.2. Multi-sampling

Sample libraries commonly include multiple velocities for a given
sound to capture tonal variation when an instrument is played at
varying intensities. Taking inspiration from this, we capture sev-
eral recordings for cymbals struck at different velocities.

The simplest use for the recordings at V' velocity levels is to
compute all the modes as before for each level, and set our filter-
bank to accept the union of all modes in all files:

[mo,vo..mN,MO; veey 7”17,0,1)‘,_1 "mN*LUV—l}

Then, as the player strikes the virtual cymbal we excite one set
of V' modes (or an interpolation). A few variations exist:

e Per-note velocity lookup: The control application sends a
signal such as note-on velocity, which we use to pick the
mode data closest to that velocity level. This data is used
for the every sample of that strike contributing to z().

e Per-sample velocity lookup: Similar to the above, but we
continuously vary the mode parameters excited on a sample-
by-sample basis: the early part of an excitation contributes
from low-velocity V', and the maximum amplitude portion
contributes from higher-velocity V' captures (thus, the v in
~Ymz(t) depends on x(t) rather than being static).

e System-energy lookup: the amount of energy in the system
governs which response we use regardless of immediate in-
put level. This may be the most physically-accurate option.

The output of a simulation using the per-sample velocity switch-
ing approach is shown in Figure[d} the model in this case is driven
by an increasing noise signal which introduces modes sampled
from higher regimes over time. Of course, we are still synthe-
sizing using a linear filterbank and not truly modeling interactions
between modes at this stage, but this modification results in a more
playable instrument for little overhead, so long as we stay with the
maximum N allowed by our system.

Simulated Nanlinearity via multiple mode sets, ramped input
20000
17500
15000
12500

10000

Magnitude (dB)}

7500

5000

2500

0.0 05 10 15 20 25 3.0 35
Time (s}

Figure 4: Response using switched velocity samples and ramped
input.

This is similar to cross-fading samples, with the improvement
that re-strikes will re-excite the system versus playing a duplicate
sample. However, we immediately recognize it is an inaccurate
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representation of the physical system: we would have modes ex-
cited that do not exist simultaneously in practice. As cymbals vi-
brate and bend, some modes will come in and out of existence.
Experimentally, we saw that depending on the cymbal, roughly
60%-80% of modes were shared between any set of 3-5 files.

However, qualitatively this is still an improvement, and we get
more accurate responses playing at low versus high velocities on a
drum pad.

It is likely even better results could be obtained by contin-
uously exciting the cymbal, by driving it mechanically or even
with continuous strikes with mallets at a certain velocity. This
allows for capturing the response to a narrow range of energy; if
we take the DFT of a several-seconds long recording of a high-
velocity cymbal strike, we will incorporate low-, medium-, and
high-energy regimes as the cymbal sound blooms and decays.

4.2.1. Multi-sampling for Performance Characteristics

One final note on this approach - while this paper focuses on crash
cymbals, a variation of the multisampling-based approach seems
to work well for modeling ride cymbals: we capture a few velocity
hits for each of bow, bell, and edge strikes, and use those to excite
certain modes in one shared modal system. Modifying playing
position between the bell and bow allows energy to build up and
brings out a sound that is difficult to capture with pure sampling.

4.3. Frequency Shifts

An extension to this method is to capture the frequency shifts by
pairing modes across velocity levels that are at nearby frequencies:
Wm,v1 and Wy, 2 under some threshold frequency shift. At per-
formance time, we not only choose which modes are excited, but
are able to change their frequencies as well.

As an offline computation we have many options as far as
clustering and nearest-neighbor algorithms; if we ever needed to
perform it real-time, a tracking algorithm such as that included in
PARSHL [21]] or linear programming [22] are worth considering,
if they cope with spectrally dense content.

4.4. Implementing Modal Coupling

Finally, we introduce modal coupling to approximate a phenomena
in the nonlinear regimes: identify the set of frequencies that only
appear in high-velocity captures, and couple each one of these to
one or more modes that is present at lower velocities by ¥, n,
representing a coupling from mode m to n. Modes may feed mul-
tiple other modes, for example both 9, »1 and ¥, n2 may ex-
ist to establish a one-to-many relationship. At performance time,
with some system energy envelope, we establish an energy trans-
fer between modes o< k%, . This is one area where the high-Q
filters we’ve chosen excel; we simply immediately scale down the
previous complex output value y for one mode, and inject that en-
ergy into another mode (this can be a new term adjacent to the
input response term v,z (t)). When the update is performed at a
zero-crossing this preserves phase; qualitatively in terms of sound,
waiting for a zero-crossing does not seem critical here.

In practice, the prior sections on multi-sampling and frequency
gating may capture some of this behavior. However, this approach
has the opportunity to introduce real-time performance control over
how much coupling is present in the system — & in the above ex-
pression. It may easily be suppressed, exaggerated, made frequency-
dependent, etc.

While this evolves our synthesis beyond a simple modal filter-
bank excitation, it is still related to the linear modal model, and
is not a true physical simulation of the chaotic regime of cymbals.
Nevertheless it is a computationally efficient approximation that
starts to bridge the gap between our simple modal responses and a
real-time playable cymbal synthesizer.

GPU programming details have been absent from previous
sections, as the choice of modes is up to the plugin running in
the DAW process and we can treat the GPU as a black box. It is
relevant here, however, as modes directly influence each other and
must communicate, and the GPU kernel would need to perform the
trading of energy between modes.

The fact that threads run in groups of 32 has some relevance.
If we can keep groups of modes that couple in clusters of 32, then
programming becomes much easier since threads inside a warp
have access to a block of shared memory that may be used for
computation. It is not a showstopper if we instead must communi-
cate using global memory, just less optimal.

We tried a few sub-approaches as to how to choose modes:
modes could pair with the closest (in frequency) unused higher-
regime mode, modes could look for modes close to an octave up,
fifths, etc., or we could simply pair modes randomly. Qualitatively,
these resulted in similar effects, with more difference when using
smaller N.

A sound example for modal coupling is in Figure[5] We drive a
virtual cymbal mechanically with constant noise, and k is set fairly
high so modes are introduced quickly once crossing a manually-
specified energy threshold between regions.

As a comparison with the real cymbal spectrograms, we see
modes emerging over time, an improvement over our first step of
pure linear modal synthesis, and have model controls over when
and how quickly the modes marked as high-energy-regime emerge,
which adds an interesting performance dimension. Work remains,
however, to automatically model the attack for multiple stick hit
velocities; our examples here all involved some manual iteration.

Simulated Nonlinearity via Coupling--small mode set
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Figure 5: Response using simulated modal coupling; coupled
sources/targets only
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__global__ void filterbankKernel (
floatx yprev, // Previous state
const ModeInfox mi, // Mode frequencies and dampings.
const float* input, // Input signal.
float* output) { // Buffer we write output samples to.
// Initialization - each thread figures out its
// place in the world (i.e., it’s the ith of N threads).
int i = threadIdx.x + blockIdx.x * blockDim.x;
int which_warp = (int) (1 / 32);
bool is_first_thread_in_warp = (i % 32) == 0;

// Load prior state from global memory.
cuComplex vy;
y.x = yprev[2 * 1i];
y.y = yprev[2 x 1 + 1];
// If prior state should be discarded, zero it.
if (mi[i].reset) {

y.x = 0.0f;

yv.y = 0.0£f;

// Introduce variables to make expressions more readable later.
cuComplex input_amp;

input_amp.x = mi[i].amp_real;

input_amp.y = mi[i].amp_real;

cuComplex input_complex;

cuComplex exp_term;

int which_drum = (int) (i / MODES_PER_DRUM) ;

const float xinput_base = input + (BUFFERSIZExwhich_drum);

// Regenerate the exponential term at the start of each buffer.

// This is moved inside the loop in case of parameter interpolation,
// modifying params on zero-crossings, or similar cases.

cuComplex e_term_tmp;

e_term_tmp.x = -mi[i].damp;

e_term_tmp.y = mi[i].freqg;

exp_term = custom_cexpf (e_term_tmp);

// Main loop - run enough cycles to generate the whole buffer.
for (int samp = 0; samp < BUFFERSIZE; samp++) {
y = cuCmulf (exp_term, vy);
// We always compute input for now, but could skip this multiply
// 1if we know there’s no input.
input_complex.x = input_base[samp];
input_complex.y = 0.0f;
y = cuCaddf (y, cuCmulf (input_complex, input_amp));

// Merge audio across all threads in the warp (32 threads),
// and store the sample in our output buffer.
// This sums in parallel, and completes in log_2(32) = 5 steps.
// We use the real part of the complex sample as output audio.
float merge_output = y.x;
for (int offset = 16; offset > 0; offset /= 2)
merge_output += __shfl down_sync(Oxffffffff, merge_output, offset);
if (is_first_thread_in_warp) {
output [which_warp+BUFFERSIZE + samp] = merge_output;

}

// Save state back to shared memory, so we may restore it
// on the next kernel launch.

yprev[2 x i] = y.x;

yprev[2 x i + 1] = y.y;

Listing 3: CUDA Kernel code for basic modal filterbank. A code walk is available in Section
DAFX-7



Proceedings of the 22" International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2—6, 2019

5. ACKNOWLEDGMENTS

Thanks to the conference organizers, and to the anonymous re-
viewers for suggestions, comments, and time.

6. CONCLUSIONS

This work presented a GPU modal filterbank system architecture,
with a walkthrough of CUDA code that implements the GPU ker-
nel. This enabled acceleration of our modal synthesis building
blocks; we were resource-constrained with a single cymbal on the
CPU but can run an entire ensemble of cymbals in real-time on
the GPU with room to spare. Next, a few extensions to basic lin-
ear modal synthesis were presented toward bringing modal cymbal
synthesis closer to real models which are highly nonlinear. These
extensions, while approximations still based on a linear synthesis
system, improve playing dynamics and allow introduction of new
performance controls.
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