

AN FPGA-BASED ACCELERATOR FOR SOUND FIELD RENDERING TEMPLATES FOR DAFX-17, EDINBURGH, UK

ABSTRACT

Finite difference time domain (FDTD) schemes are widely applied
to analyse sound propagation, but are computation-intensive and
memory-intensive. Current sound field rendering systems with
FDTD schemes are mainly based on software simulations on per-
sonal computers (PCs) or general-purpose graphic processing
units (GPGPUs). In this research, an accelerator is designed and
implemented using the field programmable gate array (FPGA) for
sound field rendering. Unlike software simulations on PCs and
GPGPUs, the FPGA-based sound field rendering system directly
implements wave equations by reconfigurable hardware. Further-
more, a sliding window-based data buffering system is adopted to
alleviate external memory bandwidth bottlenecks. Compared to
the software simulation carried out on a PC with 128 GB DDR4
RAMs and an Intel i7-7820X processor running at 3.6 GHz, the
proposed FPGA-based accelerator takes half of the rendering time
and doubles the computation throughput even if the clock fre-
quency of the FPGA system is about 267 MHz.

1. INTRODUCTION

Sound field rendering models sound propagation in spatial and
time domains, and is fundamental to numerous scientific and en-
gineering applications, which vary widely from interactive appli-
cations, such as computer games and virtual reality, to offline ap-
plications like architectural design and noise control. Generally,
the sound field rendering algorithms are categorized into geomet-
ric methods and wave-based methods. The geometric methods
make the assumption that surface primitives are much larger than
the wavelength of sound. As a result, the low-frequency diffraction
effects of sound wave are lost while the computation capability is
reduced significantly. Nowadays, the geometric methods are
widely applied in interactive applications because of easy imple-
mentation and low computation demand. In contrast, the wave-
based methods, such as finite difference time domain (FDTD)
methods, boundary element and finite element methods, directly
solve the acoustic wave equations in either time domain or fre-
quency domain using numerical methods, and they provide highly
accurate modelling of all aspects of sound propagation, including
full wave diffraction.

Among the wave-based methods, the FDTD method, which
numerically solves the wave equation by using a finite number of
grids in a discretized space at discrete time steps, has become an
essential approach in room acoustic simulation owing to its ease
of implementation and parallelization since it was introduced to
analyse acoustical behaviour by O. Chiba et al., and D. Bottel-
dooren et al. [1–3]. However, the FDTD method suffers from the

 This work was supported by the I-O DATA foundation and JSPS

KAKENHI Grant Number JP19K12092.

numerical dispersion, which is an inherent problem constraining
the valid usable bandwidth.

To reduce numerical dispersion in the FDTD method, many
works have been done in 3-D scheme. L. Savioja et al., G. R. Cam-
pos et al., and D. Murphy et al. proposed alternative digital wave-
guide mesh topologies [4–6]; K. Kowalczyk and M. Walstijn de-
veloped the explicit second-order accurate schemes, including the
27-point compact explicit FDTD scheme [7]. J. Mourik and D.
Murphy investigated two-step high-order explicit “large-star”
schemes [8]. B. Hamilton and S. Bilbao introduced the fourth-or-
der accurate explicit and implicit FDTD schemes for 2-D and 3-D
wave equations [9][10], respectively. They also developed a set of
two-step explicit FDTD schemes with high-order accuracy in both
spatial and time domains for 3-D room acoustics [11].

On the other hand, numerical dispersion is still challenge in
sound field rendering with the FDTD method, and conventional
approach to alleviate the effects of numerical dispersion through
spatial grid oversampling incurs significant computational cost.
This results in the FDTD method scales poorly with the volume of
sound spaces and the analysed maximum frequency. Generally,
the computing capability of solving wave equations in the FDTD
method is increased as the fourth power of frequency [12] and pro-
portionally with the volume of sound spaces. Given the auditory
range of humans (20 Hz–20 kHz), simulating sound wave propa-
gation in a space like a concert hall or a cathedral for the maximum
simulation frequency of 20 kHz requires petaflops of computing
power and terabytes of memory. Only large computer cluster or
supercomputer can satisfy such requirements in current computer
systems, but they are prohibitive expensive.

In recent years, GPGPUs and FPGAs were applied to acceler-
ate computation in sound field rendering because of their coarse-
grain parallelism of thousands of arithmetic units [13-22]. Cur-
rently, an FPGA chip has more hardware resources owing to the
development of fabrication technology, including thousands of
hardened floating-point arithmetic units, large on-chip block
memories, millions of reconfigurable logic blocks. Unlike soft-
ware simulations on PCs and GPGPUs, FPGA-based sound ren-
dering systems directly implement sound wave equations by con-
figurable logic blocks and hardened arithmetic units inside an
FPGA. The system data-path and input/output (I/O) interfaces can
be customized in accordance to applications, and thousands of
arithmetic units are coordinated to work in parallel to improve
computation performance. The incident signals and the rendering
results can be directly put in and out through the customized I/O
interfaces. From the point of view of real-time processing, FPGA
provides a promising solution to real-time sound rendering appli-
cations. In our previous work, a FPGA-based accelerator was de-
veloped for real-time sound field rendering [17-23]. Although the
accelerator outperformed PC-based simulations significantly in

Yiyu Tan  Toshiyuki Imamura

RIKEN Center for Computational Science RIKEN Center for Computational Science

Kobe, Hyogo, Japan Kobe, Hyogo, Japan
tan.yiyu@riken.jp imamura.toshiyuki@riken.jp

Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019

 DAFX-2

rendering speed, the rendered sound space is small (32 × 32 × 16
grids) because only small on-chip block memories were applied.
In this paper, a FPGA-based accelerator for sound rendering is de-
signed by using high-level synthesis approach, and large external
memory is applied to extend the rendering sound volume. The
main contributions of this work are shown as follows.

(1) Uniform computing units in rendering algorithm to simplify
system design. The explicit FDTD rendering algorithm and
its uniform computing format are derived, which makes it
easy to design the computing unit in hardware system.

(2) Sliding window-based data buffering to reduce the data ac-
cess overhead and the requirement of memory bandwidth.

(3) Design and implementation of an FPGA-based accelerator
for sound field rendering by using high-level synthesis, in-
cluding design flow, system architecture, and system imple-
mentation.

(4) Evaluation and analysis of system performance based on the
prototype machine. The rendering time and computation
throughput of the FPGA-based prototype machine are eval-
uated and compared with those of the software simulation
carried out on a PC with 128 GB DDR4 RAMs and an Intel
i7-7820X processor running at 3.6 GHz.

The rest of this paper is organized as follows. The rendering
algorithm is introduced in Section 2, including the updated equa-
tions for general grids and grids on the reflective boundary. In Sec-
tion 3, the system design and implementation by using the FPGA
board DE5a-NET are described, as well as the system architecture
and the functions of main components. System performance of the
FPGA-based prototype machine is presented in Section 4, fol-
lowed by the conclusions drawn in Section 5.

2. RENDERING ALGORITHM

The wave equations for 3-D room acoustic simulation is expressed
as:

(
𝜕2

𝜕𝑡2 − 𝑐2𝛻2)𝑝(x, 𝑡) = 0 (1)

Here, 𝑝(x, 𝑡) is the sound pressure at time 𝑡 and position x, x =
(𝑥, 𝑦, 𝑧) ∈ ℛ3 is the spatial position with coordinates being

(𝑥, 𝑦, 𝑧) in a 3-D space, c is the propagation speed of sound in air,

the operator
𝜕2

𝜕𝑡2 denotes the second partial derivative with re-

spect to time, the operator 𝛻2 stands for the spatial 3-D Laplacian

operator, and 𝛻2 =
∂2

∂𝑥2 +
∂2

∂𝑦2 +
∂2

∂𝑧2 . Then, the wave equation

(1) can be described by the time domain formulation shown in
Equation (2)

𝜕2𝑝(x,𝑡)

𝜕𝑡2 = 𝑐2(
𝜕2𝑝(x,𝑡)

𝜕𝑥2 +
𝜕2𝑝(x,𝑡)

𝜕𝑦2 +
𝜕2𝑝(x,𝑡)

𝜕𝑧2) (2)

In order to discretize Equation (2) at time and spatial domains, us-

ing 𝑃𝑛(𝑖, 𝑗, 𝑘) ≅ 𝑝(𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑧, nT) as an approximation to

𝑝(x,t) at time 𝑡 = 𝑛𝑇 and position x = (𝑖, 𝑗, 𝑘), where 𝑇 is the

time step, 𝑛 is the number of time steps, and Δ𝑥, Δ𝑦, Δ𝑧 are the

Cartesian grid spacing in x, y, and z axes, respectively. Then the
temporal and spatial difference operators can be defined as

𝜕2𝑝(x,𝑡)

𝜕𝑡2 =
𝑃𝑛+1(𝑖,𝑗,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛−1(𝑖,𝑗,𝑘)

𝑇2

𝜕2𝑝(x,𝑡)

𝜕𝑥2 =
𝑃𝑛(𝑖+1,𝑗,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖−1,𝑗,𝑘)

𝛥𝑥2 (3)

𝜕2𝑝(x,𝑡)

𝜕𝑦2 =
𝑃𝑛(𝑖,𝑗+1,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖,𝑗−1,𝑘)

𝛥𝑦2

𝜕2𝑝(x,𝑡)

𝜕𝑧2 =
𝑃𝑛(𝑖,𝑗,𝑘+1)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖,𝑗,𝑘−1)

𝛥𝑧2

In a cubical grid, letting Δ𝑥 = Δ𝑦 = Δ𝑧 = Δ𝑙 and inserting

Equation (3) in Equation (2), Equation (2) is discretized and Equa-
tion (4) is yielded.

𝑃𝑛+1(𝑖, 𝑗, 𝑘) = 𝜒2[𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) (4)

+ 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1)
+ 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1)] + (2 − 6𝜒2)𝑃𝑛(𝑖, 𝑗, 𝑘) − 𝑃𝑛−1(𝑖, 𝑗, 𝑘)

where 𝜒 =
𝑐𝑇

Δ𝑙
 is the Courant number, and cannot be larger than

1

√3

because of numerical stability in a 3-D sound space. From Equa-
tion (4), to compute the sound pressure of a grid needs three mul-
tiplications, six additions, and one subtraction. In order to reduce
the multiplication operations, which need more clock cycles and

hardware resources, 𝜒 is assumed to be
1

2
, and Equation (4) is then

rewritten as [18][19][23]

𝑃𝑛+1(𝑖, 𝑗, 𝑘) =
1

4
[𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘)

+ 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) (5)

+𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 2𝑃𝑛(𝑖, 𝑗, 𝑘)] − 𝑃𝑛−1(𝑖, 𝑗, 𝑘)

In Equation (5), two multiplication operations can be replaced by
right and left shift operations, which are easily implemented by
hardware and consume less clock cycles.

2.1. Reflective boundary

In realistic room acoustics, the boundary conditions should be con-
sidered to model the reflection and absorption from walls. In this
study, the reflective boundary is concerned. A reflective boundary
can be modelled as a locally reacting surface by assuming that
wave does not propagate along with the boundary surface, and the
acoustical behavior is only affected by the sound pressure and par-
ticle velocity perpendicular to the boundary surface. If a sound

wave travels in a positive axis (𝑥, 𝑦, 𝑧) direction, the boundary

impedance 𝑍 is denoted by the sound pressure and the particle vi-
bration through Equation (6) [24].

 𝑍 =
𝑃

𝑈
 (6)

Here, 𝑈 is the particle velocity component perpendicular to the
boundary, and P is the sound pressure. For a boundary perpendic-
ular to an axis, the momentum conservation equation of wave
propagation is

 𝛻𝑃 + 𝜌
𝜕𝑈

𝜕𝑡
= 0 (7)

where 𝜌 is the air density. Differentiating both sides of Equation

(6) with respect to 𝑡 and inserting Equation (7), the boundary con-

ditions are obtained in terms of sound pressure [19][23][25].

Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019

 DAFX-3

𝜕𝑃

𝜕𝑡
= −𝑐𝜉𝛻𝑃 (8)

where 𝜉 =
𝑍

𝜌𝑐
 is the normalized boundary impedance. For a cubi-

cal sound space, boundary grids are classified into interior grids of
a boundary, edges, and corners according to their positions. Dif-
ferent formulas are applied to update their sound pressures. For
example, for the interior grids of right boundary, wave travels

along the positive 𝑥 axis direction, and Equation (9) is derived by

discretizing Equation (8).

𝑃𝑛+1(𝑖,𝑗,𝑘)−𝑃𝑛−1(𝑖,𝑗,𝑘)

2𝑇
= −𝑐𝜉

𝑃𝑛(𝑖+1,𝑗,𝑘)−𝑃𝑛(𝑖−1,𝑗,𝑘)

2𝛥𝑥
 (9)

Rearranging the terms in Equation (9) and introducing the param-

eter 𝜒, Equation (10) is obtained to represent a virtual grid outside

the sound space.

𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) = 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘)

+
1

𝜒𝜉
[𝑃𝑛−1(𝑖, 𝑗, 𝑘) − 𝑃𝑛+1(𝑖, 𝑗, 𝑘)] (10)

Substituting 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) in Equation (4) with Equation (10),
then

𝑃𝑛+1(𝑖, 𝑗, 𝑘) = [𝜒2(2𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) +

𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1)) +

(2 − 6𝜒2)𝑃𝑛(𝑖, 𝑗, 𝑘) + (
𝜒

𝜉
− 1) 𝑃𝑛−1(𝑖, 𝑗, 𝑘)] / (

𝜒

𝜉
+ 1) (11)

By introducing the reflection factor 𝑅 as
(𝜉−1)

(𝜉+1)
 and 𝜒 being

1

2
,

Equation (11) is changed to Equation (12) [19][23], which is ap-
plied to update the sound pressure of the interior grids of right
boundary.

𝑃𝑛+1(𝑖, 𝑗, 𝑘) =
1+𝑅

2(3+𝑅)
[2𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) +

𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) +

2𝑃𝑛(𝑖, 𝑗, 𝑘)] −
3𝑅+1

3+𝑅
𝑃𝑛−1(𝑖, 𝑗, 𝑘) (12)

Equation (12) consists of the sum of the sound pressures of a

grid and its neighbor grids at the time step 𝑛, and its sound pres-

sure at the time step 𝑛 − 1. Compared with Equation (5), except
for the multiplicands, Equation (12) only replaces the sound pres-

sure of the virtual grid 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) by the sound pressure of the

neighbor grid 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) in the summation. Moreover, for the
interior grids of other boundaries, the multiplicands are same ex-
cept for the sound pressure of the substituted virtual grid in the
summation. For example, the updated equation for an interior grid
of left boundary is obtained by substituting the sound pressure of

the virtual grid 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) with the sound pressure of the direct

neighbor grid 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) in Equation (12). Hence, the summa-

tion is changed as 2 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 −
1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 2 𝑃𝑛(𝑖, 𝑗, 𝑘). The sim-
ilar derivation procedure can be applied to edges and corners by
using different boundary conditions.

Equations (5) and (12) show that to compute sound pressure
of a grid needs the sound pressures of its own and neighbors at
previous time steps. For different types of grids, the updated equa-
tions have similar formats except for the multiplicands for the

summation and 𝑃𝑛−1(𝑖, 𝑗, 𝑘) , respectively. From Equations (5)
and (12), a uniform updated Equation (13) can be derived.

𝑃(𝑛+1)(𝑖, 𝑗, 𝑘) = 𝐷1 ∗ [𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) +
𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) +
𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) + 2𝑃𝑛(𝑖, 𝑗, 𝑘)] − 𝐷2 ∗ 𝑃(𝑛−1)(𝑖, 𝑗, 𝑘) (13)

As shown in Table 1, the parameters D1, D2, and items in the sum-
mation in Equation (13) are associated with the position of a grid.
For grids on boundaries, the sound pressures of the virtual grids
are replaced by those of the related direct neighbor grids.

Table 1: Parameters

Grid position D1 D2

General

1

Interior

Edge

R

Corner

3. SYSTEM DESIGN AND IMPLEMENTATION

3.1. Design flow

The accelerator is designed using OpenCL, which is a program-
ming language for high-level synthesis of FPGA. As shown in Fig-
ure 1, the OpenCL design flow consists of the host and kernel, and
the related codes are compiled separately. The accelerator is de-
signed as kernels using OpenCL, which are then compiled to an
intermediate representation (LLVM IR), optimized, and converted
to the Verilog files by the Intel FPGA SDK for OpenCL. The EDA
tool Quartus Prime Pro is called to perform synthesis, placement
and routing to generate the FPGA bitstream, which is finally
downloaded in the FPGA and executed. The host is developed us-
ing C or C++ programming language. It initializes the kernels,
maintains the computation flow, and charges data exchange be-
tween the host machine and FPGA board. The system drivers and
controllers for I/O, such as PCIe bus and DDR memory controllers,
are generated and integrated in the system by the Intel FPGA SDK
for OpenCL automatically. Therefore, user mainly focuses on de-
signing the kernels. The system design becomes much easier, and
the development period is shortened significantly.

3.2. System design

Sound field rendering is memory-intensive. It is impossible to
store all data in the on-chip memories inside FPGA as the space
volume is increased even if the size of the on-chip memories inside
current FPGAs has been increased significantly. Instead, the ex-
ternal large DDR memory is adopted in this research. To improve
system performance, the overhead of data access to external
memory should be shortened. In the system, a sliding window-
based data buffering system is introduced to speed up data access
between the rendering engine and the on-board external memory.

R + 1

2（R + 3)

3R + 1

R + 3

R + 1

8

R + 1

2（5 − R)

5R − 1

5 − R

1

4

Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019

 DAFX-4

In the sliding window-based data buffering, the blocking tech-
nique is applied to reduce the buffer size and memory bandwidth

demand, in which a large sound space with M × N × K grids is

divided into sub-cubes with each having Nx × Ny × Nz grids.

The sub-cubes are read into the system along the Z direction, and
computations are carried out. Inside a sub-cube, sound pressures
of grids on two consecutive x-y planes are kept by buffers. There-

fore, the buffer size is reduced from M × N to Nx × Ny . The

data buffering system is implemented by using the high-speed and
high-bandwidth on-chip block RAMs inside FPGA. However, the
problem of the blocking technique is that the halo exists between
two sub-cubes, which will incur additional computations.

Host code

(.c/.cpp)

Host binary

Execution on

FPGA

Kernel code

(.cl)

LLVM IR

(.aoco)

Verilog

(.v/.sv)

FPGA bitstream

(.aocx)

C/C++ Compiler & Intel’s

OpenCL Runtime

Intel’s OpenCL Compiler

Intel’s OpenCL Compiler

Quartus: Placement & Routing

Compiler

Optimization

Figure 1: Design flow

The system diagram is illustrated in Figure 2, which consists
of system controller, three buffers (shift_register_p1, shift_regis-
ter_p2, and shift_register_posi), computing units, and output con-
troller. The incident data and position flags of grids are firstly writ-
ten into the on-board DDR memory from the host machine before
computation is started. The functions of each module are described
as follows.

Figure 2: System diagram

• system controller. The system controller maintains computa-
tion flow and generates control signals according to the com-
puting flow. It reads data and position flags from the on-board
DDR memory, and writes them to the buffers shift_register_p1,
shift_register_p2, and shift_register_posi, respectively. After
computation is completed, it also generates the writing ad-
dresses of the grids to store the computation results back to the
DDR memory. At each time step, sound pressure of the obser-
vation grid is stored in the on-board DDR memory. It is not

written back to the host machine until computations at all time
steps are finished.

• shift_register_p1, shift_register_p2, and shift_register_posi.
The shift_register_p1, shift_register_p2, and shift_regis-
ter_posi are three buffers to store the data involved in compu-
tations and their position flags, respectively. Before computa-
tion is started, data in the two continuous x-y planes of the sub-
cube are streamed into the buffers. The data at the time step n-
1 are stored in the buffer shift_register_p1 while the data at the
time step n-2 are kept by the buffer shift_register_p2. And the
corresponding position flags of grids are streamed into the

shift_register_posi. If the sub-cube contains Nx × Ny × Nz

grids and i grids are computed concurrently, the depth of the
shift_register_p1, shift_register_p2, and shift_register_posi is

Nx * Ny + i. Along with computation, the three buffers are

shifted right by i data, and another i new data and their position
flags are streamed into the buffers at each clock cycle. Such
procedure is repeated until sound pressures of all grids inside
a sub-cube are computed, and then computation is moved to
the next sub-cube. The three buffers are implemented by the
high-width and high-speed block memory inside FPGA. In the
current design, the sub-cube has 256 × 256 × 256 grids and i
is 16.

• computing units. The computing units is the arithmetic unit to
calculate sound pressures of i grids concurrently according to
the input sound pressures at previous time steps and location
indicators (position_flag). The location indicator is used to se-
lect the multiplicands D1 and D2 in Equation (13). As shown
in Figure 3, a uniform computing unit is designed based on
Equation (13), which consists of a 7-input adder, a subtractor,
two multipliers, and four multiplexers [19][23]. In Figure 3,
the multipliers are used for boundary grids while they are re-
placed by the right and left shifters for general grids. Two mul-
tiplexers are applied to select the multiplicands D1 and D2 in
accordance to the location indicator of a grid. At each clock
cycle, sound pressures of 16 grids are computed in parallel.

• memory controller. The memory controller stores the compu-
tation results to the external on-board DDR memory.

+

Adder1

Pt

Pd

Pl

Pr

Dout

Pf

Pb

0

S1

S4

D

C2C1 ENB

Multiplexer

multiplicand2

multiplicand3

multiplicand1

S1

S4

D

C2C1 ENB

Multiplexer

multiplicand6

multiplicand4

multiplicand5

Loc_indicator

multiplier

multiplier

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

P_1

P_2

-

Subtractor1

multi_d1

multi_d2

r_sum

P_2
P_2

r_sum

sum_mult

P2_mult

Figure 3: Computing unit

3.3. System implementation

The accelerator is implemented by using the FPGA board DE5a-
NET from the Terasic Company [26], which contains an Intel Ar-
ria 10 FPGA and 8 GB on-board DDR memory arranged in two
independent channels. As shown in Figure 4, the incident data and

Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019

 DAFX-5

position information of all grids are firstly written into the on-
board memory from the host machine through the PCIe bus. The
Rendering Engine reads an incident datum from the memory, cal-
culates the sound pressures of all grids, and stores the computation
results back to the DDR memory. Then another incident datum is
read into, and computations are repeated. This procedure is iter-
ated until all incident data are read into the rendering engine, and
sound pressures of all grids are obtained. Finally, the sound pres-
sure at the observation point will be written back to the host ma-
chine. The two independent DDR memory will be updated in turn.

Rendering Engine DDR Controller

PCIe Controller

DDR4 SDRAM

A (4 GB)

DDR4 SDRAM

B (4 GB)
DDR Controller

Host

Machine

PCIe Bus

FPGA

FPGA Board

Figure 4: System diagram

When the accelerator is implemented by the FPGA board
DE5a-net, the hardware resource utilization is shown in Table 2.
From Table 2, the current design consumes less half of the availa-
ble hardware resources inside the FPGA chip Arria 10, and the
system performance can be improved further by using more com-
putation kernels to work in parallel.

 Table 2: Hardware resource utilization

4. PERFORMANCE EVALUATION

To estimate the performance of the proposed accelerator, the ren-
dering time in the sound spaces with grids being 128 ×128 × 128,
256 × 256 × 256, 510 × 510 × 510, and 764 × 764 × 764, is meas-
ured. The reflection coefficient of boundaries is 0.95, and the time
steps are 1000. As a comparison, the same system is developed
using C++ programming language, parallelized using OpenMP,
and executed on a PC with 128 GB DDR4 memory and an Intel
i7-7820X processor, which has eight cores running at 3.6 GHz.
The reference C++ codes are compiled by the gcc compiler with
the soption -O3 and -fopenmp to use all eight cores in the PC. The
simulation and execution environment are shown in Table 3. As
shown in Table 3, the memory size of the FPGA-based system,
including the external and on-chip memories, is much smaller than
that of the PC in software simulation, and the clock frequency of
FPGA is about 267 MHz while the PC runs at 3.6 GHz.

4.1. Rendering time

 Figure 5 shows the rendering time taken by the software simula-
tions on the PC and the FPGA-based system in the case of different
sound space volumes. In Figure 5, the sub-cube is with 128 × 128
× 128 grids in the case of sound space volume being 128 × 128 ×
128 grids while it is with 256 × 256 × 256 grids in other cases. The
number of grids computed in parallel is 16. As shown in Figure 5,

the rendering time taken by the FPGA-based accelerator is almost
half of that consumed by the software simulations on PC. In addi-
tion, due to the effect of the existing halo, the simulated area be-
comes a little smaller.

Table 3: Technology specification

 FPGA
Software

simulation

Model
Arria 10 GX

10AX115N2F45E1SG
i7-7820X

Cores 1518 DSP blocks 8 cores

Clock

frequency
About 267 MHz 3.6 GHz

On-chip

memory

6.625 MB block

RAMs

L1 cache: 256 KB

L2 cache: 8 MB

L3 cache: 11 MB

External

memory
8 GB 128 GB

OS CentOS 7.0 CentOS 7.0

Programming

language
OpenCL C

Compiler
Intel FPGA SDK for

OpenCL 17.1
gcc 4.8.5

Fabrication 20 nm 14 nm

Figure 5: Rendering time

4.2. Computation throughput

The computation throughput denotes the updated speed of grids at
each time step, and is calculated by using the following formula.

 𝐷𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑔𝑟𝑖𝑑

𝑡𝑝𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝
 (14)

Logic

utilization

DSP

blocks

RAM

blocks

Clock

frequency

70701 (17%) 152 (10%) 891 (33%) 267 MHz

Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019

 DAFX-6

where 𝑁𝑔𝑟𝑖𝑑 is the number of grids in a sound space, and

𝑡𝑝𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 is the rendering time at each time step. Figure

6 presents the computation throughput in the case of differ-

ent grid scales in the FPGA-based accelerator and the soft-

ware simulations on the PC. Figure 6 indicates that the pro-

posed accelerator almost doubles the computation through-

put of the software simulations, especially in the case of

large sound spaces.

Figure 6: Computation throughput

5. CONCLUSIONS

Sound field rendering is computation-intensive and memory-in-
tensive. FPGAs provide an alternative solution to sound field ren-
dering, especially for real-time applications because the I/O inter-
faces are easily tailored according to applications. In this study, a
FPGA-based accelerator for sound field rendering is developed us-
ing high-level synthesis in FPGA, in which the sliding window-
based data buffering scheme is applied to reduce the demand of
memory bandwidth. Although the FPGA-based accelerator runs at
1/13 (0.267/3.6) of clock frequency of the PC in software simula-
tions, and the memory size of the FPGA board is about 1/16
(8/128) of that on the PC, the FPGA-based accelerator doubles the
performance of the software simulations carried out on the PC.
However, Figure 5 indicates that the rendering time at a time step
is still long in the accelerator, which results in low sampling rate
at the output rendered results. Hence, the current design is not suit-
able for real-time applications. From Table 2, we can find that the
hardware resource utilization is low, and more computing units
may be involved in calculation. Then, more grids may be com-
puted concurrently to shorten the computation time at a time step.
The related system is under development.

6. ACKNOWLEDGMENTS

Thanks to the Intel for the donation of the FPGA board DE5a-NET
and the related software tools through University Program. This
work was supported by the I-O DATA Foundation and JSPS
KAKENHI Grant Number JP19K12092.

7. REFERENCES

[1] D. Botteldooren, “Acoustical Finite-difference Time-domain

Simulation in a Quasi-Cartesian Grid,” J. Acoust. Soc. Am.,

vol. 95, pp. 2313-2319, 1994.

[2] D. Botteldooren, “Finite-difference Time-domain Simulation

of Low-frequency Room Acoustic Problems,” J. Acoust. Soc.

Am., vol. 98, pp. 3302-3308, 1995.

[3] O. Chiba, T. Kashiwa, H. Shimoda, S. Kagami, I. Fukai,

“Analysis of Sound Fields in Three Dimensional Space by

the Time-dependent Finite-difference Method based on the

Leap Frog Algorithm,” J. Acoust. Soc. Jpn., vol. 49, pp. 551-

562, 1993.

[4] L. Savioja, and V. Valimaki, “Interpolated Rectangular 3-D

Digital Waveguide Mesh Algorithms with Frequency Warp-

ing,” IEEE Trans. Speech Audio Process., vol. 11, pp. 783-

790, 2003.

[5] G. R. Campos, and D. M. Howard, “On the Computational

Efficiency of Different Waveguide Mesh Topologies for

Room Acoustic Simulation,” IEEE Trans. Speech Audio Pro-

cess., vol. 13, pp. 1063-1072, 2005.

[6] D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley,

“Acoustic Modeling Using the Digital Waveguide Mesh,”

IEEE Signal Process. Mag., vol. 24, pp. 55-66, 2007.

[7] K. Kowalczyk and M. Walstijn, “Room Acoustics Simulation

Using 3-D Compact Explicit FDTD Schemes,” IEEE Trans.

Audio Speech Lang. Process., vol. 19, pp. 34-46, 2011.

[8] J. Mourik, and D. Murphy, “Explicit Higher-order FDTD

Schemes for 3D Room Acoustic Simulation,” IEEE/ACM

Trans. Audio Speech Lang. Process., vol. 22, pp. 2003-2011,

2014.

[9] B. Hamilton, and S. Bilbao, “Fourth-order and optimised fi-

nite difference schemes for the 2-D wave equation,” In Proc.

Digital Audio Effects (DAFx-13), Maynooth, Ireland, Sept.

2013, pp. 2-6.

[10] B. Hamilton, S. Bilbao, and C. J. Webb, “Revisiting implicit

finite difference schemes for 3D room acoustics simulations

on GPU,” In Proc. Digital Audio Effects (DAFx-14), Erlan-

gen, Germany, Sept. 2014, pp. 41-48.

[11] B. Hamilton, and S. Bilbao, “FDTD Methods for 3-D Room

Acoustics Simulation with High-order Accuracy in Space and

Time,” IEEE/ACM Trans. Audio Speech Lang. Process., vol.

25, pp. 2112-2124, 2017.

[12] V. Valimaki, J. D. Parker, L. Savioja, J. O. Smith, and J. S.

Abel, “Fifty Years of Artificial Reverberation,” IEEE Trans.

Audio Speech Lang. Process., vol. 20, no. 5, pp. 1421-1448,

2012.

[13] T. Ishii, T. Tsuchiya, and K. Okubo, “Three-dimensional

Sound field Analysis Using Compact Explicit Finite Differ-

ence Time Domain Method with Graphics Processing Unit

Cluster System,” Jpn. J. Appl. Phys., vol. 52, pp. 07HC11,

2013.

[14] T. Tsuchiya, “Three-dimensional Sound Field Rendering

with Digital Boundary Condition Using Graphics Processing

Unit,” Jpn. J. Appl. Phys., vol. 49, pp. 07HC10, 2010.

[15] C. Spa, A. Rey, and E. Hernandez, “A GPU Implementation

of an Explicit Compact FDTD Algorithm with a Digital Im-

pedance Filter for Room Acoustics Applications,”

IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23, no.

8, pp. 1368–1380, 2015.

[16] M. Tanaka, T. Tsuchiya, and K. Okubo, “Two-dimensional

Numerical Analysis of Nonlinear Sound Wave Propagation

using Constrained Interpolation Profile Method Including

Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019

 DAFX-7

Nonlinear Effect in Advection Equation,” Jpn. J. Appl. Phys.,

vol. 50, pp. 07HE17, 2011.

[17] Y. Y. Tan, Y. Inoguchi, E. Sugawara, M. Otani, Y. Iwaya, Y.

Sato, H. Matsuoka, and T. Tsuchiya, “A Real-time Sound

Field Renderer Based on Digital Huygens’ Model,” J. Sound

Vib., vol. 330, pp. 4302–4312, 2011.

[18] Y. Y. Tan, Y. Inoguchi, Y. Sato, M. Otani, Y. Iwaya, H. Mat-

suoka, and T. Tsuchiya, “A Hardware-oriented Finite-differ-

ence Time-domain Algorithm for Sound Field Rendering,”

Jpn. J. Appl. Phys., vol. 52, pp. 07HC03, 2013.

[19] Y. Y. Tan, Y. Inoguchi, Y. Sato, M. Otani, Y. Iwaya, H. Mat-

suoka, and T. Tsuchiya, “A Real-time Sound Rendering Sys-

tem Based on the Finite-difference Time-domain Algorithm,”

Jpn. J. Appl. Phys., vol. 53, pp. 07KC14, 2014.

[20] Y. Y. Tan, Y. Inoguchi, Y. Sato, M. Otani, Y. Iwaya, H. Mat-

suoka, and T. Tsuchiya, “Analysis of sound field distribution

for room acoustics: from the point of view of hardware im-

plementation,” In Proc. Digital Audio Effects (DAFx-12),

York, UK, Sept. 2012, pp. 93-96.

[21] Y. Y. Tan, Y. Inoguchi, Y. Sato, M. Otani, Y. Iwaya, H. Mat-

suoka, and T. Tsuchiya, “A FPGA implementation of the

two-dimensional digital Huygens’ model,” In Proc. Field

Program. Technol. (FPT 2010), Beijing, China, Dec. 2010,

pp. 304-307.

[22] Y. Inoguchi, Y. Y. Tan, Y. Sato, M. Otani, Y. Iwaya, H. Mat-

suoka, and T. Tsuchiya, “DHM and FDTD based hardware

sound field simulation acceleration,” In Proc. Digital Audio

Effects (DAFx-11), Paris, France, Sept. 2011, pp. 69-72.

[23] Y.Y. Tan, Y. Inoguchi, M. Otani, Y. Iwaya, and T. Tsuchiya,

“A Real-Time Sound Field Rendering Processor”, Applied

Sciences, vol. 8, no. 35, 2018.

[24] H. Kuttruff, Room Acoustics, Taylor & Francis: New York,

NY, USA, 2009.

[25] K. Kowalczyk, and M. Walstijn, “Formulation of Locally Re-

acting Surfaces in FDTD/K-DWM Modelling of Acoustic

Spaces,” Acta Acust. United Acust., vol. 94, pp. 891-906,

2008.

[26] https://www.terasic.com.tw/cgi-bin/page/archive.pl?Lan-

guage=English&CategoryNo=231&No=970, Accessed June

18, 2019.

http://jjap.jsap.jp/archive/JJAP-50.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=231&No=970
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=231&No=970

