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ABSTRACT 

Finite difference time domain (FDTD) schemes are widely applied 
to analyse sound propagation, but are computation-intensive and 
memory-intensive. Current sound field rendering systems with 
FDTD schemes are mainly based on software simulations on per-
sonal computers (PCs) or general-purpose graphic processing 
units (GPGPUs). In this research, an accelerator is designed and 
implemented using the field programmable gate array (FPGA) for 
sound field rendering. Unlike software simulations on PCs and 
GPGPUs, the FPGA-based sound field rendering system directly 
implements wave equations by reconfigurable hardware. Further-
more, a sliding window-based data buffering system is adopted to 
alleviate external memory bandwidth bottlenecks. Compared to 
the software simulation carried out on a PC with 128 GB DDR4 
RAMs and an Intel i7-7820X processor running at 3.6 GHz, the 
proposed FPGA-based accelerator takes half of the rendering time 
and doubles the computation throughput even if the clock fre-
quency of the FPGA system is about 267 MHz. 

1. INTRODUCTION 

Sound field rendering models sound propagation in spatial and 
time domains, and is fundamental to numerous scientific and en-
gineering applications, which vary widely from interactive appli-
cations, such as computer games and virtual reality, to offline ap-
plications like architectural design and noise control. Generally, 
the sound field rendering algorithms are categorized into geomet-
ric methods and wave-based methods. The geometric methods 
make the assumption that surface primitives are much larger than 
the wavelength of sound. As a result, the low-frequency diffraction 
effects of sound wave are lost while the computation capability is 
reduced significantly. Nowadays, the geometric methods are 
widely applied in interactive applications because of easy imple-
mentation and low computation demand. In contrast, the wave-
based methods, such as finite difference time domain (FDTD) 
methods, boundary element and finite element methods, directly 
solve the acoustic wave equations in either time domain or fre-
quency domain using numerical methods, and they provide highly 
accurate modelling of all aspects of sound propagation, including 
full wave diffraction.   

Among the wave-based methods, the FDTD method, which 
numerically solves the wave equation by using a finite number of 
grids in a discretized space at discrete time steps, has become an 
essential approach in room acoustic simulation owing to its ease 
of implementation and parallelization since it was introduced to 
analyse acoustical behaviour by O. Chiba et al., and D. Bottel-
dooren et al. [1–3]. However, the FDTD method suffers from the 
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numerical dispersion, which is an inherent problem constraining 
the valid usable bandwidth.  

To reduce numerical dispersion in the FDTD method, many 
works have been done in 3-D scheme. L. Savioja et al., G. R. Cam-
pos et al., and D. Murphy et al. proposed alternative digital wave-
guide mesh topologies [4–6]; K. Kowalczyk and M. Walstijn de-
veloped the explicit second-order accurate schemes, including the 
27-point compact explicit FDTD scheme [7]. J. Mourik and D. 
Murphy investigated two-step high-order explicit “large-star” 
schemes [8]. B. Hamilton and S. Bilbao introduced the fourth-or-
der accurate explicit and implicit FDTD schemes for 2-D and 3-D 
wave equations [9][10], respectively. They also developed a set of 
two-step explicit FDTD schemes with high-order accuracy in both 
spatial and time domains for 3-D room acoustics [11]. 

On the other hand, numerical dispersion is still challenge in 
sound field rendering with the FDTD method, and conventional 
approach to alleviate the effects of numerical dispersion through 
spatial grid oversampling incurs significant computational cost. 
This results in the FDTD method scales poorly with the volume of 
sound spaces and the analysed maximum frequency. Generally, 
the computing capability of solving wave equations in the FDTD 
method is increased as the fourth power of frequency [12] and pro-
portionally with the volume of sound spaces. Given the auditory 
range of humans (20 Hz–20 kHz), simulating sound wave propa-
gation in a space like a concert hall or a cathedral for the maximum 
simulation frequency of 20 kHz requires petaflops of computing 
power and terabytes of memory. Only large computer cluster or 
supercomputer can satisfy such requirements in current computer 
systems, but they are prohibitive expensive. 

In recent years, GPGPUs and FPGAs were applied to acceler-
ate computation in sound field rendering because of their coarse-
grain parallelism of thousands of arithmetic units [13-22]. Cur-
rently, an FPGA chip has more hardware resources owing to the 
development of fabrication technology, including thousands of 
hardened floating-point arithmetic units, large on-chip block 
memories, millions of reconfigurable logic blocks. Unlike soft-
ware simulations on PCs and GPGPUs, FPGA-based sound ren-
dering systems directly implement sound wave equations by con-
figurable logic blocks and hardened arithmetic units inside an 
FPGA. The system data-path and input/output (I/O) interfaces can 
be customized in accordance to applications, and thousands of 
arithmetic units are coordinated to work in parallel to improve 
computation performance. The incident signals and the rendering 
results can be directly put in and out through the customized I/O 
interfaces. From the point of view of real-time processing, FPGA 
provides a promising solution to real-time sound rendering appli-
cations. In our previous work, a FPGA-based accelerator was de-
veloped for real-time sound field rendering [17-23]. Although the 
accelerator outperformed PC-based simulations significantly in 
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rendering speed, the rendered sound space is small (32 × 32 × 16 
grids) because only small on-chip block memories were applied. 
In this paper, a FPGA-based accelerator for sound rendering is de-
signed by using high-level synthesis approach, and large external 
memory is applied to extend the rendering sound volume. The 
main contributions of this work are shown as follows. 

(1) Uniform computing units in rendering algorithm to simplify 
system design. The explicit FDTD rendering algorithm and 
its uniform computing format are derived, which makes it 
easy to design the computing unit in hardware system.  

(2) Sliding window-based data buffering to reduce the data ac-
cess overhead and the requirement of memory bandwidth. 

(3) Design and implementation of an FPGA-based accelerator 
for sound field rendering by using high-level synthesis, in-
cluding design flow, system architecture, and system imple-
mentation. 

(4) Evaluation and analysis of system performance based on the 
prototype machine. The rendering time and computation 
throughput of the FPGA-based prototype machine are eval-
uated and compared with those of the software simulation 
carried out on a PC with 128 GB DDR4 RAMs and an Intel 
i7-7820X processor running at 3.6 GHz.  

The rest of this paper is organized as follows. The rendering 
algorithm is introduced in Section 2, including the updated equa-
tions for general grids and grids on the reflective boundary. In Sec-
tion 3, the system design and implementation by using the FPGA 
board DE5a-NET are described, as well as the system architecture 
and the functions of main components. System performance of the 
FPGA-based prototype machine is presented in Section 4, fol-
lowed by the conclusions drawn in Section 5. 

2. RENDERING ALGORITHM 

The wave equations for 3-D room acoustic simulation is expressed 
as:  

(
𝜕2

𝜕𝑡2 − 𝑐2𝛻2)𝑝(x, 𝑡) = 0                                (1)   

Here, 𝑝(x, 𝑡) is the sound pressure at time 𝑡 and position x, x =
(𝑥, 𝑦, 𝑧) ∈ ℛ3  is the spatial position with coordinates being 

(𝑥, 𝑦, 𝑧) in a 3-D space, c is the propagation speed of sound in air, 

the operator 
𝜕2

𝜕𝑡2   denotes the second partial derivative with re-

spect to time, the operator 𝛻2 stands for the spatial 3-D Laplacian 

operator, and 𝛻2 =
∂2

∂𝑥2 +
∂2

∂𝑦2 +
∂2

∂𝑧2 . Then, the wave equation 

(1) can be described by the time domain formulation shown in 
Equation (2)  

    
𝜕2𝑝(x,𝑡)

𝜕𝑡2 = 𝑐2(
𝜕2𝑝(x,𝑡)

𝜕𝑥2 +
𝜕2𝑝(x,𝑡)

𝜕𝑦2 +
𝜕2𝑝(x,𝑡)

𝜕𝑧2 )          (2)  

In order to discretize Equation (2) at time and spatial domains, us-

ing 𝑃𝑛(𝑖, 𝑗, 𝑘) ≅ 𝑝(𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑧, nT) as an approximation to 

𝑝(x,t) at time 𝑡 = 𝑛𝑇 and position x = (𝑖, 𝑗, 𝑘), where 𝑇 is the 

time step, 𝑛 is the number of time steps, and Δ𝑥, Δ𝑦, Δ𝑧 are the 

Cartesian grid spacing in x, y, and z axes, respectively. Then the 
temporal and spatial difference operators can be defined as  

𝜕2𝑝(x,𝑡)

𝜕𝑡2 =
𝑃𝑛+1(𝑖,𝑗,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛−1(𝑖,𝑗,𝑘)

𝑇2   

𝜕2𝑝(x,𝑡)

𝜕𝑥2 =
𝑃𝑛(𝑖+1,𝑗,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖−1,𝑗,𝑘)

𝛥𝑥2                    (3) 

𝜕2𝑝(x,𝑡)

𝜕𝑦2 =
𝑃𝑛(𝑖,𝑗+1,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖,𝑗−1,𝑘)

𝛥𝑦2   

𝜕2𝑝(x,𝑡)

𝜕𝑧2 =
𝑃𝑛(𝑖,𝑗,𝑘+1)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖,𝑗,𝑘−1)

𝛥𝑧2    

In a cubical grid, letting Δ𝑥 = Δ𝑦 = Δ𝑧 = Δ𝑙  and inserting 

Equation (3) in Equation (2), Equation (2) is discretized and Equa-
tion (4) is yielded. 

𝑃𝑛+1(𝑖, 𝑗, 𝑘) = 𝜒2[𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘)        (4) 

+ 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1)
+ 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1)] + (2 − 6𝜒2)𝑃𝑛(𝑖, 𝑗, 𝑘) − 𝑃𝑛−1(𝑖, 𝑗, 𝑘) 

where 𝜒 =
𝑐𝑇

Δ𝑙
 is the Courant number, and cannot be larger than 

1

√3
 

because of numerical stability in a 3-D sound space. From Equa-
tion (4), to compute the sound pressure of a grid needs three mul-
tiplications, six additions, and one subtraction. In order to reduce 
the multiplication operations, which need more clock cycles and 

hardware resources, 𝜒 is assumed to be 
1

2
, and Equation (4) is then 

rewritten as [18][19][23]  

𝑃𝑛+1(𝑖, 𝑗, 𝑘) =
1

4
[𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) 

+ 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1)       (5) 

+𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 2𝑃𝑛(𝑖, 𝑗, 𝑘)] − 𝑃𝑛−1(𝑖, 𝑗, 𝑘) 

In Equation (5), two multiplication operations can be replaced by 
right and left shift operations, which are easily implemented by 
hardware and consume less clock cycles.  

2.1. Reflective boundary 

In realistic room acoustics, the boundary conditions should be con-
sidered to model the reflection and absorption from walls. In this 
study, the reflective boundary is concerned. A reflective boundary 
can be modelled as a locally reacting surface by assuming that 
wave does not propagate along with the boundary surface, and the 
acoustical behavior is only affected by the sound pressure and par-
ticle velocity perpendicular to the boundary surface. If a sound 

wave travels in a positive axis (𝑥, 𝑦, 𝑧) direction, the boundary 

impedance 𝑍 is denoted by the sound pressure and the particle vi-
bration through Equation (6) [24]. 

                          𝑍 =
𝑃

𝑈
                                                  (6) 

Here, 𝑈 is the particle velocity component perpendicular to the 
boundary, and P is the sound pressure. For a boundary perpendic-
ular to an axis, the momentum conservation equation of wave 
propagation is 

 𝛻𝑃 + 𝜌
𝜕𝑈

𝜕𝑡
= 0                            (7) 

where 𝜌 is the air density. Differentiating both sides of Equation 

(6) with respect to 𝑡 and inserting Equation (7), the boundary con-

ditions are obtained in terms of sound pressure [19][23][25]. 
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𝜕𝑃

𝜕𝑡
= −𝑐𝜉𝛻𝑃                                     (8) 

where 𝜉 =
𝑍

𝜌𝑐
 is the normalized boundary impedance. For a cubi-

cal sound space, boundary grids are classified into interior grids of 
a boundary, edges, and corners according to their positions. Dif-
ferent formulas are applied to update their sound pressures. For 
example, for the interior grids of right boundary, wave travels 

along the positive  𝑥 axis direction, and Equation (9) is derived by 

discretizing Equation (8).   

𝑃𝑛+1(𝑖,𝑗,𝑘)−𝑃𝑛−1(𝑖,𝑗,𝑘)

2𝑇
= −𝑐𝜉

𝑃𝑛(𝑖+1,𝑗,𝑘)−𝑃𝑛(𝑖−1,𝑗,𝑘)

2𝛥𝑥
    (9) 

Rearranging the terms in Equation (9) and introducing the param-

eter 𝜒, Equation (10) is obtained to represent a virtual grid outside 

the sound space.  

𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) = 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) 

+
1

𝜒𝜉
[𝑃𝑛−1(𝑖, 𝑗, 𝑘) − 𝑃𝑛+1(𝑖, 𝑗, 𝑘)]           (10)                                                                        

Substituting 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘)  in Equation (4) with Equation (10), 
then  

𝑃𝑛+1(𝑖, 𝑗, 𝑘) = [𝜒2(2𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) +

𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1)) +

(2 − 6𝜒2)𝑃𝑛(𝑖, 𝑗, 𝑘) + (
𝜒

𝜉
− 1) 𝑃𝑛−1(𝑖, 𝑗, 𝑘)] / (

𝜒

𝜉
+ 1)   (11) 

By introducing the reflection factor 𝑅  as 
(𝜉−1)

(𝜉+1)
 and 𝜒  being 

1

2
, 

Equation (11) is changed to Equation (12) [19][23], which is ap-
plied to update the sound pressure of the interior grids of right 
boundary. 

𝑃𝑛+1(𝑖, 𝑗, 𝑘) =
1+𝑅

2(3+𝑅)
[2𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) +

𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) +

2𝑃𝑛(𝑖, 𝑗, 𝑘)] −
3𝑅+1

3+𝑅
𝑃𝑛−1(𝑖, 𝑗, 𝑘)                                       (12) 

Equation (12) consists of the sum of the sound pressures of a 

grid and its neighbor grids at the time step 𝑛, and its sound pres-

sure at the time step 𝑛 − 1. Compared with Equation (5), except 
for the multiplicands, Equation (12) only replaces the sound pres-

sure of the virtual grid 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) by the sound pressure of the 

neighbor grid 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) in the summation. Moreover, for the 
interior grids of other boundaries, the multiplicands are same ex-
cept for the sound pressure of the substituted virtual grid in the 
summation. For example, the updated equation for an interior grid 
of left boundary is obtained by substituting the sound pressure of 

the virtual grid 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) with the sound pressure of the direct 

neighbor grid 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) in Equation (12). Hence, the summa-

tion is changed as 2 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) +  𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) +  𝑃𝑛(𝑖, 𝑗 −
1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) +  𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 2 𝑃𝑛(𝑖, 𝑗, 𝑘). The sim-
ilar derivation procedure can be applied to edges and corners by 
using different boundary conditions.  

Equations (5) and (12) show that to compute sound pressure 
of a grid needs the sound pressures of its own and neighbors at 
previous time steps. For different types of grids, the updated equa-
tions have similar formats except for the multiplicands for the 

summation and 𝑃𝑛−1(𝑖, 𝑗, 𝑘) , respectively. From Equations (5) 
and (12), a uniform updated Equation (13) can be derived.  

𝑃(𝑛+1)(𝑖, 𝑗, 𝑘) = 𝐷1 ∗ [𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) +
𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) +
𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) + 2𝑃𝑛(𝑖, 𝑗, 𝑘)] − 𝐷2 ∗ 𝑃(𝑛−1)(𝑖, 𝑗, 𝑘)     (13) 

As shown in Table 1, the parameters D1, D2, and items in the sum-
mation in Equation (13) are associated with the position of a grid. 
For grids on boundaries, the sound pressures of the virtual grids 
are replaced by those of the related direct neighbor grids. 

Table 1: Parameters 

Grid position D1 D2 

General 

 

1 

Interior   
  

Edge 
  

R 

Corner 
  

  

3. SYSTEM DESIGN AND IMPLEMENTATION 

3.1. Design flow  

The accelerator is designed using OpenCL, which is a program-
ming language for high-level synthesis of FPGA. As shown in Fig-
ure 1, the OpenCL design flow consists of the host and kernel, and 
the related codes are compiled separately. The accelerator is de-
signed as kernels using OpenCL, which are then compiled to an 
intermediate representation (LLVM IR), optimized, and converted 
to the Verilog files by the Intel FPGA SDK for OpenCL. The EDA 
tool Quartus Prime Pro is called to perform synthesis, placement 
and routing to generate the FPGA bitstream, which is finally 
downloaded in the FPGA and executed. The host is developed us-
ing C or C++ programming language. It initializes the kernels, 
maintains the computation flow, and charges data exchange be-
tween the host machine and FPGA board. The system drivers and 
controllers for I/O, such as PCIe bus and DDR memory controllers, 
are generated and integrated in the system by the Intel FPGA SDK 
for OpenCL automatically. Therefore, user mainly focuses on de-
signing the kernels. The system design becomes much easier, and 
the development period is shortened significantly.  

3.2. System design 

Sound field rendering is memory-intensive. It is impossible to 
store all data in the on-chip memories inside FPGA as the space 
volume is increased even if the size of the on-chip memories inside 
current FPGAs has been increased significantly. Instead, the ex-
ternal large DDR memory is adopted in this research. To improve 
system performance, the overhead of data access to external 
memory should be shortened. In the system, a sliding window-
based data buffering system is introduced to speed up data access 
between the rendering engine and the on-board external memory.  

R + 1

2（R + 3)
 

3R + 1

R + 3
 

R + 1

8
 

R + 1

2（5 − R)
 

5R − 1

5 − R
 

1

4
 



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019 

 

 DAFX-4 

In the sliding window-based data buffering, the blocking tech-
nique is applied to reduce the buffer size and memory bandwidth 

demand, in which a large sound space with M × N × K grids is 

divided into sub-cubes with each having Nx  × Ny × Nz grids. 

The sub-cubes are read into the system along the Z direction, and 
computations are carried out. Inside a sub-cube, sound pressures 
of grids on two consecutive x-y planes are kept by buffers. There-

fore, the buffer size is reduced from M × N to Nx × Ny . The 

data buffering system is implemented by using the high-speed and 
high-bandwidth on-chip block RAMs inside FPGA. However, the 
problem of the blocking technique is that the halo exists between 
two sub-cubes, which will incur additional computations. 

 

Host code

(.c/.cpp)

Host binary

Execution on 

FPGA

Kernel code

(.cl)

LLVM IR

(.aoco)

Verilog

(.v/.sv)

FPGA bitstream

(.aocx)

C/C++ Compiler & Intel’s 

OpenCL Runtime

Intel’s OpenCL Compiler

Intel’s OpenCL Compiler

Quartus: Placement & Routing

Compiler 

Optimization

 

Figure 1: Design flow 

The system diagram is illustrated in Figure 2, which consists 
of system controller, three buffers (shift_register_p1, shift_regis-
ter_p2, and shift_register_posi), computing units, and output con-
troller. The incident data and position flags of grids are firstly writ-
ten into the on-board DDR memory from the host machine before  
computation is started. The functions of each module are described 
as follows. 

 

Figure 2: System diagram 

• system controller. The system controller maintains computa-
tion flow and generates control signals according to the com-
puting flow. It reads data and position flags from the on-board 
DDR memory, and writes them to the buffers shift_register_p1, 
shift_register_p2, and shift_register_posi, respectively. After 
computation is completed, it also generates the writing ad-
dresses of the grids to store the computation results back to the 
DDR memory. At each time step, sound pressure of the obser-
vation grid is stored in the on-board DDR memory. It is not 

written back to the host machine until computations at all time 
steps are finished. 

• shift_register_p1, shift_register_p2, and shift_register_posi. 
The shift_register_p1, shift_register_p2, and shift_regis-
ter_posi are three buffers to store the data involved in compu-
tations and their position flags, respectively. Before computa-
tion is started, data in the two continuous x-y planes of the sub-
cube are streamed into the buffers. The data at the time step n-
1 are stored in the buffer shift_register_p1 while the data at the 
time step n-2 are kept by the buffer shift_register_p2. And the 
corresponding position flags of grids are streamed into the 

shift_register_posi. If the sub-cube contains Nx × Ny × Nz 

grids and i grids are computed concurrently, the depth of the 
shift_register_p1, shift_register_p2, and shift_register_posi is 

Nx * Ny + i. Along with computation, the three buffers are 

shifted right by i data, and another i new data and their position 
flags are streamed into the buffers at each clock cycle. Such 
procedure is repeated until sound pressures of all grids inside 
a sub-cube are computed, and then computation is moved to 
the next sub-cube. The three buffers are implemented by the 
high-width and high-speed block memory inside FPGA. In the 
current design, the sub-cube has 256 × 256 × 256 grids and i 
is 16. 

• computing units. The computing units is the arithmetic unit to 
calculate sound pressures of i grids concurrently according to 
the input sound pressures at previous time steps and location 
indicators (position_flag). The location indicator is used to se-
lect the multiplicands D1 and D2 in Equation (13). As shown 
in Figure 3, a uniform computing unit is designed based on 
Equation (13), which consists of a 7-input adder, a subtractor, 
two multipliers, and four multiplexers [19][23]. In Figure 3, 
the multipliers are used for boundary grids while they are re-
placed by the right and left shifters for general grids. Two mul-
tiplexers are applied to select the multiplicands D1 and D2 in 
accordance to the location indicator of a grid. At each clock 
cycle, sound pressures of 16 grids are computed in parallel. 

• memory controller. The memory controller stores the compu-
tation results to the external on-board DDR memory. 

+

Adder1

Pt

Pd

Pl

Pr

Dout

Pf

Pb

0

S1

S4

D

C2C1 ENB

Multiplexer

multiplicand2

multiplicand3

multiplicand1

S1

S4

D

C2C1 ENB

Multiplexer

multiplicand6

multiplicand4

multiplicand5

Loc_indicator

multiplier

multiplier

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

P_1

P_2

-

Subtractor1

multi_d1

multi_d2

r_sum

P_2
P_2

r_sum

sum_mult

P2_mult

 

Figure 3: Computing unit 

3.3. System implementation 

The accelerator is implemented by using the FPGA board DE5a-
NET from the Terasic Company [26], which contains an Intel Ar-
ria 10 FPGA and 8 GB on-board DDR memory arranged in two 
independent channels. As shown in Figure 4, the incident data and 
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position information of all grids are firstly written into the on-
board memory from the host machine through the PCIe bus. The 
Rendering Engine reads an incident datum from the memory, cal-
culates the sound pressures of all grids, and stores the computation 
results back to the DDR memory. Then another incident datum is 
read into, and computations are repeated. This procedure is iter-
ated until all incident data are read into the rendering engine, and 
sound pressures of all grids are obtained. Finally, the sound pres-
sure at the observation point will be written back to the host ma-
chine. The two independent DDR memory will be updated in turn. 

Rendering Engine DDR Controller

PCIe Controller

DDR4 SDRAM 

A (4 GB)

DDR4 SDRAM 

B (4 GB)
DDR Controller

Host 

Machine

PCIe Bus

FPGA

FPGA Board

 

Figure 4: System diagram 

When the accelerator is implemented by the FPGA board 
DE5a-net, the hardware resource utilization is shown in Table 2. 
From Table 2, the current design consumes less half of the availa-
ble hardware resources inside the FPGA chip Arria 10, and the 
system performance can be improved further by using more com-
putation kernels to work in parallel. 

 Table 2: Hardware resource utilization 

4. PERFORMANCE EVALUATION 

To estimate the performance of the proposed accelerator, the ren-
dering time in the sound spaces with grids being 128 ×128 × 128, 
256 × 256 × 256, 510 × 510 × 510, and 764 × 764 × 764, is meas-
ured. The reflection coefficient of boundaries is 0.95, and the time 
steps are 1000. As a comparison, the same system is developed 
using C++ programming language, parallelized using OpenMP, 
and executed on a PC with 128 GB DDR4 memory and an Intel 
i7-7820X processor, which has eight cores running at 3.6 GHz. 
The reference C++ codes are compiled by the gcc compiler with 
the soption -O3 and -fopenmp to use all eight cores in the PC. The 
simulation and execution environment are shown in Table 3. As 
shown in Table 3, the memory size of the FPGA-based system, 
including the external and on-chip memories, is much smaller than 
that of the PC in software simulation, and the clock frequency of 
FPGA is about 267 MHz while the PC runs at 3.6 GHz.  

4.1. Rendering time 

 Figure 5 shows the rendering time taken by the software simula-
tions on the PC and the FPGA-based system in the case of different 
sound space volumes. In Figure 5, the sub-cube is with 128 × 128 
× 128 grids in the case of sound space volume being 128 × 128 × 
128 grids while it is with 256 × 256 × 256 grids in other cases. The 
number of grids computed in parallel is 16. As shown in Figure 5, 

the rendering time taken by the FPGA-based accelerator is almost 
half of that consumed by the software simulations on PC. In addi-
tion, due to the effect of the existing halo, the simulated area be-
comes a little smaller. 

Table 3: Technology specification 

  FPGA 
Software  

simulation 

Model 
Arria 10 GX 

10AX115N2F45E1SG 
i7-7820X 

Cores 1518 DSP blocks 8 cores 

Clock  

frequency 
About 267 MHz 3.6 GHz 

On-chip 

memory 

6.625 MB block 

RAMs 

L1 cache: 256 KB 

L2 cache: 8 MB 

L3 cache: 11 MB 

External 

memory 
8 GB 128 GB 

OS CentOS 7.0 CentOS 7.0 

Programming 

language  
OpenCL C 

Compiler 
Intel FPGA SDK for 

OpenCL  17.1 
gcc 4.8.5 

Fabrication  20 nm 14 nm 

 

Figure 5: Rendering time 

4.2. Computation throughput 

The computation throughput denotes the updated speed of grids at 
each time step, and is calculated by using the following formula.  

                   𝐷𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑔𝑟𝑖𝑑

𝑡𝑝𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝
                              (14) 

Logic  

utilization 

DSP 

blocks 

RAM 

blocks 

Clock  

frequency 

70701 (17%) 152 (10%) 891 (33%) 267 MHz 



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019 

 

 DAFX-6 

where 𝑁𝑔𝑟𝑖𝑑 is the number of grids in a sound space, and 

𝑡𝑝𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 is the rendering time at each time step. Figure 

6 presents the computation throughput in the case of differ-

ent grid scales in the FPGA-based accelerator and the soft-

ware simulations on the PC. Figure 6 indicates that the pro-

posed accelerator almost doubles the computation through-

put of the software simulations, especially in the case of 

large sound spaces. 

 

Figure 6: Computation throughput 

5. CONCLUSIONS 

Sound field rendering is computation-intensive and memory-in-
tensive. FPGAs provide an alternative solution to sound field ren-
dering, especially for real-time applications because the I/O inter-
faces are easily tailored according to applications. In this study, a 
FPGA-based accelerator for sound field rendering is developed us-
ing high-level synthesis in FPGA, in which the sliding window-
based data buffering scheme is applied to reduce the demand of 
memory bandwidth. Although the FPGA-based accelerator runs at 
1/13 (0.267/3.6) of clock frequency of the PC in software simula-
tions, and the memory size of the FPGA board is about 1/16 
(8/128) of that on the PC, the FPGA-based accelerator doubles the 
performance of the software simulations carried out on the PC. 
However, Figure 5 indicates that the rendering time at a time step 
is still long in the accelerator, which results in low sampling rate 
at the output rendered results. Hence, the current design is not suit-
able for real-time applications. From Table 2, we can find that the 
hardware resource utilization is low, and more computing units 
may be involved in calculation. Then, more grids may be com-
puted concurrently to shorten the computation time at a time step. 
The related system is under development. 
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