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ABSTRACT

This paper introduces an algorithm for time-scale modification of
audio signals based on using non-negative matrix factorization.
The activation signals attributed to the detected components are
used for identifying sound events. The segmentation of these events
is used for detecting and preserving transients. In addition, the al-
gorithm introduces the possibility of preserving the envelopes of
overlapping sound events while globally modifying the duration
of an audio clip.

1. INTRODUCTION

Time-scale modification (TSM) of audio signals is nowadays an
essential audio processing tool in music and audio production.
TSM became particularly popular in music creation workflows
based on the reuse of readily available audio. A common goal
in this context is to stretch audio clips, that often contain their own
rhythmic micro-structures, so that they will match a given musi-
cal context. It can be argued that the key aspect for preserving the
structure is the location of sound events in time. Existing TSM
algorithms will also change the duration of the sounds themselves,
for instance, the duration of a drum hit, which is not necessarily
desirable and may sound unnatural. On the other hand, artifacts of
TSM algorithms are used as musical features in electronic music
experimentation. Different algorithms will produce different kinds
of artifacts so they can be creatively abused to produce different
sound effects. In the end, a common situation in music production
software is to choose between different TSM algorithms that may
perform differently for different material.

One difficulty in TSM is the presence of overlapping sound
events of different durations and temporal structures. Given recent
advances in audio source separation research, we are interested
in whether source separation algorithms could help with TSM.
Even when separation is not perfect, mixing the estimates of sound
sources back together often helps to diminish any artifacts intro-
duced in the separation. This feature can be used to improve TSM
by allowing separate scaling of the component sounds of an audio
excerpt.

A key algorithm often used for source separation is non-negative
matrix factorization (NMF). NMF is an unsupervised method, which
has been shown to produce good results for transcription and sep-
aration of signals with a clear percussive profile, such as piano
sounds [1] or drums [2]. Since it has to learn from the signal
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(typically the magnitude spectrogram), its effectiveness depends
largely on the invariants present in the structure of the data, as the
algorithm tries to reconstruct it from a limited set of spectral pat-
terns and their activations. In this sense, while NMF is limited for
dealing with polyphonic music, it can often cope well with short
sounds such as the musical loops used for some types of rhythmic
music. NMF will essentially capture repetitions of spectral pat-
terns, so, for example, in drum patterns it will capture the structure
of activations of drum sounds. Similarly, in the case of pitched
sounds with fixed spectrum such as piano notes, it can easily cap-
ture the structure of tonal melodies.

In this paper we investigate the use of NMF for TSM. By sep-
arating different sound events, we expect NMF to make it possible
to stretch them separately, allowing the envelope of overlapping
events, such as percussive instruments and resonant bodies, to be
perceived more naturally. In addition, by introducing a new way of
modifying the duration of audio signals, our algorithm introduces
a different kind of artifact for materials on which the algorithm
fails to produce natural sounding results, which in turn may yield
new affordances for sound design and music. Specifically, when
NMF fails to identify note-like events, the proposed algorithm may
produce rhythmic modifications or even more extreme misplacing
of parts of the signal. These artifacts could no doubt be creatively
abused by experimenters seeking new sonorities.

The paper is organized as follows. In the next section, we
briefly review related work in the field of TSM. In Section 3, we
describe our proposed algorithm for TSM using NMF. In Section
4 we discuss some examples that illustrate the potential of the al-
gorithm. Finally, we draw some conclusions and discuss future
work.

2. RELATED WORK

Research in TSM was relatively active between the 1980s and
early 2000s. Algorithms developed back then, such as time do-
main overlap and add (OLA), waveform similarity overlap and add
(WSOLA) [3], or the phase vocoder [4], remain popular. The lat-
ter two algorithms provide relatively good results for music con-
tent, but introduce very strong artifacts when stretching transients.
Both WSOLA and the phase vocoder have been thus improved
with transient detection [5, 6, 7]. Academic research on TSM con-
siderably slowed down afterwards. Perhaps due to the success of
TSM for music and audio production in digital audio workstations,
industry took the lead. During the last few years, research on TSM
has been growing again. This may be partially due to the potential
of audio source separation research. To some extent, growing in-
terest in reproducible research in audio signal processing can also
be credited for the renewed interest, since algorithms used in com-

DAFX-1

mailto:g.roma@hud.ac.uk
mailto:o.green@hud.ac.uk
mailto:p.a.tremblay@hud.ac.uk
http://creativecommons.org/licenses/by/3.0/


Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

mercial products are often not well known outside the companies
that make them.

A significant recent contribution was provided in [8] by apply-
ing harmonic-percussive source separation (HPSS) and then using
OLA for percussive estimates and the phase vocoder for harmonic
estimates. The authors also presented the Matlab TSM toolbox,
including the classic algorithms and their own, in [9]. The algo-
rithm proposed in [10] applies a similar concept, but unlike [8] it
is able to keep transient processing in the frequency domain.

In this paper, we explore the use of another source separa-
tion technique, NMF, which allows different treatment of different
sources more generally than transient/harmonic separation. The
activation curves resulting from the NMF separation are used as a
cue for the presence of transients due to specific components. Our
approach is inspired by the system presented in [5]. An impor-
tant detail is that, unlike in the classic phase vocoder, the system
in [5] proposed the use of the same hop size for both the analysis
and synthesis stages. Using the same hop size allows using the
(slower) NMF decomposition as part of the analysis stage, while
different scaling factors can be tried in the synthesis stage without
the need to analyze again. It also allows tuning all the windowing
parameters as suitable for the input material.

3. PROPOSED ALGORITHM

3.1. Overview

We now briefly describe the proposed system. A block diagram is
shown in Figure 1. The system is intended for time-scale modifi-
cation of relatively short (e.g. a few seconds) audio signals. The
time domain audio signal is first converted to a spectrogram via the
short-time Fourier transform (STFT). The magnitude spectrogram
is then decomposed into several components via NMF. As per the
NMF framework (described in Section 3.3), each component con-
sists of a basis function and an activation function. Components
are then segmented into sound events by analysis of the activation
function. The activation function is also used to identify one or
more transients within a given sound event. For each of the re-
sulting events, a number of frames are copied verbatim into the
synthesized spectrogram. These can be either the detected tran-
sients or the whole event, which can be preferred for percussive
sounds. For the remaining frames, a new scaling factor is com-
puted in order to respect the scaled duration for the whole event.
Time scaling is then applied following the principles of the phase
vocoder. The resulting component spectrograms are then mixed
and synthesized via inverse STFT.

Audio STFT NMF

Source
Activations

Segmentation

Event-wise
scaling

+

Scaled Audio

ISTFT

TF Masking

Source Bases

Figure 1: Block diagram of the proposed system.

3.2. Source separation

Our system is based on the assumption that the input signal is a
mixture of I component signals,

x(t) =

I∑
i=1

xi(t) (1)

Here, the component signal xi is assumed to have the appropri-
ate gain with respect to the mixture. We want to produce a time-
scaled version of x, y, which is analogously a mixture of signals∑

i yi(t). Assuming the mixing model holds in the (complex)
frequency domain, we estimate the component frequency-domain
signals Xi(k, n) from the STFT X(k, n) of x (where k and n are
respectively frequency and time indices) via NMF. We then stretch
each component Xi into Yi, and obtain yi via inverse STFT. The
stretched components are then mixed in the time domain.

3.3. NMF decomposition

NMF is typically applied to a magnitude spectrogram. TSM will
require using both the magnitude spectrogram, denoted as

V = |X| (2)

and the phase spectrogram, denoted as

Φ = 6 (X) (3)

Under the NMF framework, an approximation of V is obtained as

V̂ = WH (4)

The matrix W ∈ RK×I contains a set of I bases, which typi-
cally represent static spectra corresponding to each of the detected
sources. The matrix H ∈ RI×N contains a corresponding set of I
activations, which represent the temporal envelopes of each com-
ponent. We can use these activations to find the positions of tran-
sients (typically corresponding to note onsets) and general active
regions corresponding to each component, thus applying different
stretch factors to preserve the structure of sound events. In addi-
tion, it is often possible to classify the bases into tonal and percus-
sive sounds [11, 12], which could be used for applying different
stretching strategies similar to [8]. However in this paper we just
consider the option of preserving the duration of the active region
as a user parameter.

For this to work it is of course crucial to obtain a good decom-
position that represents the perceived components of the signal. A
common strategy is to minimize the divergence

DKL(V |WH) =
∑
kn

dKL(V (k, n)|
∑
i

Wi(k)Hi(n)) (5)

where

dKL(x|y) = x log
x

y
− x+ y. (6)

As originally proposed in [13], this can be done via a simple
multiplicative update algorithm. This can often produce noisy acti-
vation functions, which make the segmentation step more difficult.
Some works have proposed constraining the objective function to
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produce smooth activations. In this work we use the NMF algo-
rithm presented in [14]. Here, a penalty factor is introduced to
promote smoothness of H:

S(H) =
1

2

∑
i

∑
n

(Hi(n)−Hi(n− 1))2. (7)

The algorithm then tries to minimize the cost function

DKL(V |WH) + βS(H), (8)

subject to the non-negativity constraints of the NMF frame-
work. Here β is a parameter that can be used to control the smooth-
ness of the resulting activation curves, at the expense of the algo-
rithm having a harder time finding the appropriate components. In
our experiments, a value of β = 0.1 (an order of magnitude higher
than in [14]) worked well in most cases.

Another challenge with NMF is in how to select the rank, I ,
of the decomposition for a particular source. One approach is pro-
posed in [15], where a singular value decomposition (SVD) is per-
formed on V . The SVD of a matrix has the form Z = UΣV ᵀ,
where the singular values of Z lie along the diagonal of Σ. The
NMF rank, I , is then estimated by finding the number of singular
values that account for some proportion of the total sum along the
diagonal of Σ.

From the NMF decomposition, we obtain a soft mask

Mi =
WiHi

V̂
(9)

which we can apply to the original magnitude and phase spectro-
grams to obtain estimates for each component, V̂i = Mi � V ,
Φ̂i = Mi � Φ (where � denotes the element-wise product).

3.4. Event segmentation

Segmentation is based on the observation that activations tend to
loosely follow a binary on-off pattern (Figure 2). We identify
sound events when the activation is above a certain threshold de-
fined as µi + τ1σi (where µi and σi are respectively the mean and
standard deviation of the activation Hi(n), and τ1 is a paramerter)
for more than 3 frames. The end of the event is then adjusted to
when the activation crosses a typically lower threshold determined
in the same way for a parameter τ2. We then look for transients
within the event by identifying peaks in the first order difference
of Hi(n), and pick them in the same way by a third threshold pa-
rameter τ3.

When multiple transients are found within the same active
event (e.g. for a rapid succession of percussive or note events with
long decay), the event is split so that each transient will always
start an event (although in general it is not required that all events
start with a transient). A transient is defined to have a fixed num-
ber of frames corresponding to 10ms (which can be controlled as a
user parameter), depending on the hop size. Finally, the ‘silence‘
in the activation between two events is attached to the preceding
event, so that an event is considered to have a transient, an active
part and a silence part, where transient and silence may have zero
duration. The idea is that—as the signal has a rhythmic structure—
we need to proportionally scale the spaces between event onsets,
but within an event we may apply different scaling.

Figure 2: Event segmentation of NMF activation. Top: activation
function. Bottom: first order difference.

3.5. Scaling and synthesis

The segmented events for each of the NMF components are then
scaled according to the desired factor, r. We can take advantage of
the component- and event-wise separation in several ways. First,
in order to preserve the perceptual quality of transient, the tran-
sient part of each event is not scaled. By default, a new scaling
factor rA is computed for the active part. An optional feature,
which can be called envelope preservation may be used so that the
active part is also copied without scaling as if it was a transient.
The silence scaling factor rS has then to be recomputed to keep
the whole of the event aligned according to r. When the event has
no silence (typically as a result of splitting the event due to mul-
tiple transients) envelope preservation is not applied. Outside of
transient and potentially percussive events, magnitudes are inter-
polated from the input V̂i, and phases are propagated according to
the phase vocoder strategy, including identity phase locking [16].
Thus, after finding the bin kp corresponding to the peak in the
region of influence of a given magnitude bin k, we compute the
phase envelope as

φe(k, n) = Φ(k, n)− Φ(kp, n), (10)

and the deviation with respect to the bin’s frequency as

∆φ(k, n) = Φ(k, n)− Φ(k, n− 1)− ω(k)R (11)
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where w(k) is the normalized frequency corresponding to bin k,
and R is the hop size. The phase for the scaled signal in non-
transient regions is then synthesized as

ΦY i(k, n) = ΦY i(k, n− 1) + ω(k)R+

Arg(∆φ(k, n) + φe(k, n)),
(12)

where Arg(x) is the principal argument function.
The estimates of the scaled spectrogram, V̂Y i and Φ̂Y i, are

then composed into Ŷi as

Ŷi(k, n) = V̂Y i(k, n) eΦ̂Y i(k,n)j , (13)

and synthesized using the inverse STFT as described in Sec-
tion 3.2.

4. EXAMPLES

We implemented the proposed algorithm in a Python package,
which includes a partial port of the Matlab TSM toolbox. The
code is available on github1. While testing with several excerpts,
we found that results are generally better than classic methods such
as OLA or WSOLA, or the phase vocoder without transient preser-
vation, and closer to HPSS and state-of-the-art commercial pack-
ages. A number of examples can be listened to on the companion
web page for this paper2. It is possible to obtain good results by
automating the choice of the NMF rank as outlined in Section 3.3,
which often produces a large number of components. This is an
interesting result, considering that the TSM is performed piece-
wise through potentially several hundreds of events and then re-
assembled, however it bears a high computational cost. In prac-
tice, a better solution is often to manually set a suitable value for
the NMF rank. Generally, the algorithm works better for percus-
sive and repetitive material, and suffers with slow frequency or
amplitude modulations. With respect to the envelope preservation
option, it is generally sensitive to errors in the detection of events,
and hence it tends to work best for sounds that are well modeled
by NMF, such as percussive loops. In these cases it can produce a
more natural sound than most available algorithms. Our approach
is generally comparable to using HPSS [8], which is also based
on a source separation technique that decomposes the magnitude
spectrogram. We now demonstrate the strengths and weaknesses
of the NMF decomposition through some examples.

4.1. Glockenspiel

Using NMF tends to produce better attacks for simple percussive
loops and melodies. Figure 3 shows the spectrogram of a few
notes of the Glockenspiel melody included in the TSM Toolbox,
as stretched by both the HPSS and the NMF approaches. It can
be seen that using NMF produces sharper transient at note onsets.
This is probably partly due to the NMF activations providing a
good cue of the locations of transients due to individual notes, but
also to the fact that our algorithm stays in the same frame rate, al-
lowing to build a more coherent representation of the note, while
the HPSS approach requires going back to the time domain for the
percussive part, while staying in the frequency domain for stretch-
ing the harmonic part.

1https://github.com/flucoma/DAFX-2019
2http://www.flucoma.org/DAFX-2019/

Figure 3: Excerpt of a glockenspiel melody stretched with a 1.8
factor using HPSS (top) and NMF (bottom)

4.2. Drum loop

One unique aspect of the proposed algorithm is the ability to mod-
ify the duration of the signal while preserving the envelope of per-
cussive sounds. This option may introduce some artifacts if the
events are not well detected, but it works well for dry percussive
loops. An example is shown in Figure 4, showing the initial beats
of a drum loop. Here, we can observe that the NMF approach ap-
proximates better the duration of the first two sound events (a bass
drum and a hi-hat). Our approach modifies the tempo of the pattern
while preserving the natural sound of each beat, while stretching
via HPSS also stretches the sound’s envelope, which gives it an ar-
tificial time profile. The latter is also generally the case in current
commercial products.

4.3. Novel artifacts

As mentioned in the introduction, we are also interested in the
creative possibilities of the failures of TSM algorithms. In this
sense, we hope the proposed algorithm will also contribute new
kinds of artifacts that can be used for exploring new musical pos-
sibilities. The main user parameters are the NMF rank (I), and
the three parameters influencing the event segmentation (Section
3.4). Without the envelope preservation feature, our algorithm can
reproduce common artifacts related with the phase vocoder. For
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Figure 4: Excerpt of a drum loop (top:original) stretched with a
0.6 factor using HPSS (middle) and NMF (bottom).

example, raising the transient detection threshold τ3 can be used
to induce transient smearing, while extreme stretching factors will
produce well-known phasing effects. The novel contribution of
our algorithm is the possibility to preserve the envelope of a sound
event, but when events are not properly detected, this results in
misplaced components that produce rhythmic variations and dif-
ferent smearings of time not usually found in phase vocoder. An
example (zoomed again for detail) is shown in Figure 5. Here, we
intentionally raised the chances of mistakes by raising the rank to

20 (which is more than needed for a drum kit using mainly four
sounds) and made it difficult for the algorithm to find the events
by playing with parameters τ1 and τ2. As a result, part of the
rhythm becomes confusing. The main impression is that some of
the sounds have been divided and parts of them have been mis-
placed, creating a new rhythmic effect.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an algorithm for time scale modi-
fication of audio using non-negative matrix factorization. We have
presented an implementation and demonstrated several examples.
The algorithm has the unique feature of being able to preserve the
duration of sound events while modifying the duration of the se-
quence. This is generally not possible without source separation,
unless the signal is purely monophonic, as the envelopes of dif-
ferent events tend to overlap. The NMF framework also helps
generally in the identification of transients due to different compo-
nents in the frequency domain. As future work, we plan to investi-
gate strategies for synchronizing event boundaries across compo-
nents so that envelope preservation can be used without compro-
mising rhythmic structure. Similarly, classification of NMF bases
would allow applying selectively to percussive events. Also, since
frequency-domain TSM generally requires careful attention to the
phase, we plan to experiment with complex NMF variants.
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