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ABSTRACT

Rigid-body impact sound synthesis methods often omit the ground
sound. In this paper we analyze an idealized ground-sound model
based on an elastodynamic halfspace, and use it to identify sce-
narios wherein ground sound is perceptually relevant versus when
it is masked by the impacting object’s modal sound or transient
acceleration noise. Our analytical model gives a smooth, closed-
form expression for ground surface acceleration, which we can
then use in the Rayleigh integral or in an “acoustic shader” for a
finite-difference time-domain wave simulation. We find that when
modal sound is inaudible, ground sound is audible in scenarios
where a dense object impacts a soft ground and scenarios where
the impact point has a low elevation angle to the listening point.

1. INTRODUCTION

Many sound synthesis examples in computer animation and vir-
tual environments contain moving objects that impact the ground
or other large flat surfaces. The ground affects the sound in two
ways: 1) as a passive scatterer: sound waves in the room are re-
flected off the ground, and 2) as an emitter: the surface of the
ground vibrates due to impact events, and thus emits sound. Typi-
cal approaches incorporate the passive scattering and reflection de-
pending on context and methodology; however, very few physics-
based approaches consider the acoustic emissions of the ground
itself. In this paper we model the ground as an idealized elas-
todynamic halfspace, and analyze its sound emission during an
object-ground impact. Its relative importance is assessed in vari-
ous object-ground impact scenarios, and is found to vary greatly.

Ground emission and scattering have been explored in many
works over the decades. One line of works [1, 2] fit data-driven
models to synthesize footstep sounds. Works on fracture and micro-
collisions [3, 4] treat the ground and table as a large modal vi-
bration source; of these, one paper [3] models the modes from a
9 m × 9 m × 0.9 m concrete slab; these dimensions directly af-
fect modal resonant frequencies. The modal method also requires
heavy precomputation resources and storage because large objects
have many vibration modes within audible frequencies. Further-
more, the above methods [3, 4] compute propagation with only
one object at a time and omit repeated object-ground reflections.

After an object-ground collision, we may hear three types of
sounds: (1) the object emits ringing sound from on its resonant
modes, (2) the object emits a transient acceleration noise upon
impact, and (3) the ground emits a transient sound upon impact.
While many previous papers [3, 4, 5] model the first two in their
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sound synthesis, they omit the third type of sound. Most recently,
[5] models the collisions of many floor materials; however, it in-
corporates the floor properties only in the excitation force profile
and models sound just from the object’s surface.

One argument for omitting the ground sound is that object
sounds are often louder, especially for larger objects, and can mask
quieter ground contributions. Nevertheless, depending on the floor-
ing materials, contact parameters, and listening angle, the ground
can sometimes be a more efficient sound source than a small ob-
ject. The interference from the object’s reflection can also change
its waveform and make it distinct from the ground sound. Our
ground vibration model allows us to quantify the intensity of the
ground sound, albeit for a simplified elastic halfspace ground model.

Another work [6] develops a discretized modal model to col-
lide vibrating strings with solid obstacles. We aim not to model
ringing sound but rather to introduce a closed-form formula for
the transient surface vibrations due to a single impulse.

Finite-difference, time-domain (FDTD), wave-based sound syn-
thesis methods [7, 8, 9] naturally handle scattering with static or
moving objects. Recently, [9] enabled scattering with moving ob-
jects by rasterizing their boundaries during each timestep. This
method abstracts away object sources using an “acoustic shader”
interface; the simulation queries the object shader for the surface
vibrations and uses them to drive sound waves that propagate to
the listener. However, no method is proposed to evaluate ground
vibrations in an acoustic shader. We implement a ground shader
in this work. Our work focuses on the topic of sound emission
rather than reflections; it is orthogonal to room acoustics models
that simulate room impulse responses and modes.

This surface vibration problem has been studied in seismol-
ogy literature as Lamb’s problem [10], and its ideal solution is
well-known with a closed form. However, the ideal solution to
an instantaneous load contains singularities at wavefronts that are
difficult to evaluate numerically. To smooth the singularities, we
derive a closed-form temporal regularization of the solution to
Lamb’s problem that removes the singularities at the three wave-
fronts, similar to how [11] regularizes the singularity in an infinite
elastic medium for animation effects. This closed-form expression
makes it easy to model ground sound without simulation.

We consider the following problem: Given a simple solid ob-
ject, such as a ball, colliding with the ground (modeled as an elastic
half-space) how do we estimate the sound emitted by the surface
vibrations of the ground? Our contributions are

1. an estimate of the material properties and object sizes where
the ground sound is not masked by the object sound,

2. an interactive method to synthesize ground sound (no pre-
computation is required), and

3. an “acoustic shader” for finite-difference time-domain sim-
ulations that directly evaluates the regularized solution.
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2. GROUND SOUND MODEL: BACKGROUND

We model the transient ground sound by first modeling the ground
surface vibration, and then using this motion to drive sound propa-
gation into the air. For the former, we derive a closed-form model
of the ground vibration to minimize computation while preserving
accuracy. Our propagation model is one-way coupled because air
pressure oscillations are not powerful enough to affect the ground.

In particular, we use Lamb’s problem [10] and its solutions to
model the floor surface vibrations from an impact, and we describe
them in Sections 2.2 and 2.3. We regularize the model in Section 3
to eliminate undesired singularities, and then we model the sound
propagation in Section 4.

2.1. Lamb’s problem

We present Lamb’s problem here, which involves applying an in-
stantaneous normal point load to an elastic halfspace. We present
it with a load rather than an impulse in order to simplify the math-
ematical representation of the solution. In later sections we will
derive and use a closed-form representation of the surface acceler-
ation in response to a specific impulse profile.

Consider a linear isotropic elastic half-space with Poisson’s
ratio ν and stiffness (shear modulus) µ, as shown in Figure 1. We
consider the elastic half-space to be on the bottom (z negative), and
free space to be above it, with the boundary being the horizontal
z = 0 plane. Starting at time t = 0, a normal point force of
magnitude 1 is applied and held (“push”) at the origin (0, 0, 0).
The input force profile on the z = 0 plane is therefore

f(x, y, t) = δ(x, y) θ(t) ẑ, (1)

where δ, θ are the Dirac delta and Heaviside theta functions.

f(t)

+z

un(r,t)

r
ground

air

Figure 1: Notation for Lamb’s problem: f(t) is the ground ex-
citation force, and un(r, t) is the vertical displacement response.
Note that while our diagram shows f(t) in its usual downward
direction (−z), we define f(t) in (1) to point in the +z direction.

The linear partial differential equations and boundary condi-
tions can be found, for example, in equations 4 and 1 (respectively)
of [12]; we present their closed-form solution in the next section.

2.2. Solution to Lamb’s problem

Pekeris [12] first solved Lamb’s problem in 1955 for ν = 1/4.
Others [13] later solved it for generic ν. We present the solution
for generic ν from [14]. Some relevant notation is the following:

cp = speed of compression (P)-waves in the medium,
cs = speed of shear (S)-waves in the medium,

a =
cs
cp

=

√
1− 2ν

2− 2ν
, r =

√
x2 + y2.

Define κ2
1, κ

2
2, κ

2
3 as the complex roots to the Rayleigh equation:

16(1− a2)κ6 − 8(3− 2a2)κ4 + 8κ2 − 1 = 0. (2)

This equation admits three real solutions when ν < 0.2631; oth-
erwise, it has one real root and two complex conjugates. Let κ2

1 be
the largest real root, and define γ = κ1. Treat these roots as math-
ematical tools to help express the result with no direct physical
meaning (except that γ is the ratio of the S- and R- wave speeds).

Define the following set of coefficients:

Aj =
(κ2
j − 1

2
)2
√
a2 − κ2

j

(κ2
j − κ2

i )(κ
2
j − κ2

k)
, i 6= j 6= k

While the response contains both horizontal and vertical displace-
ment, only the vertical motion produces sound. The final vertical
displacement response un(r, t) is the following:

un(r, t) =
1− ν
2πµr



0 τ ≤ a,
1
2

(
1−

∑3
j=1

Aj√
τ2−κ2

j

)
, a < τ < 1,

1− A1√
τ2−γ2

, 1 ≤ τ < γ,

1 τ ≥ γ,
(3)

τ =
cst

r
. (4)

This solution applies for all ν, from 0 to 0.5 (see [14]). The piece-
wise boundaries correspond to the three wavefronts: the pressure
P-wave arrives first, when τ = a, travelling at speed cp. The shear
S-wave arrives when τ = 1, travelling at speed cs. Finally, the
Rayleigh R-wave arrives when τ = γ, travelling the slowest at
speed cr = cs/γ. See the blue line in Figure 2 for an illustration.
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S

Figure 2: Elastic wavefronts in time: (Blue:) Scaled displace-
ment response in the Pekeris solution, at 1 m away. The three
wavefronts (P-, S-, R-) are labeled. (Other colors:) Our temporal
regularization, described in Section 3. The horizontal axis is time
in seconds; the vertical axis is scaled normal displacement.

Note: It is often convenient to flip the signs of a2, γ2, and τ2

in the square roots of both the numerator and denominator in the
terms containing A1, so that the inside of the square root is real.

2.3. Singularities

In order to radiate sound waves we need to evaluate the acceler-
ation in the impulse response of Lamb’s problem. Unfortunately,
the push-like load’s displacement response, un(r, t), already con-
tains four singularity locations, which means that at each singular-
ity it will be difficult to numerically approximate surface motion.
• One singularity occurs at all positive t at the origin, where
r = 0. This singularity occurs due to the spatial δ load
location, and it has asymptotic behavior 1/r.
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• One singularity occurs at each of the wavefronts—one each
at the P- (τ = a), the S- (τ = 1), and the R- (τ = γ)
wave fronts. The first two wavefronts have continuous but
not differentiable singularities. The third wavefront is dis-
continuous with asymptotic behavior (γ − τ)−

1/2.

Our goal is to design a regularizing function in time or in
space, as a smooth approximation of a delta impulse, to act as the
initial force. We then convolve our function with the un solution
to get a closed-form response that removes the singularities.

We consider the physical parameters of our problem in choos-
ing temporal versus spatial regularization. We would like the reg-
ularization parameter to directly match the contact timescale and
area. Typical contact radii are much smaller than the contact timescale
multiplied by any of the three wave speeds; see Table 1 for one
example. Therefore the spatial contact area smooths the resulting
wave by very little compared to the temporal smoothing. Temporal
regularization thus gives us a more accurate response than spatial.

3. TEMPORAL REGULARIZATION OF THE GROUND
VIBRATION MODEL

Consider a function fε(t) that approximates δ(t) on a smoothing
timescale ε. Since the elastic wave equation is linear and un is the
response to a Heaviside θ load, we can get the vertical displace-
ment response to the force, fε ∗ θ (which is an approximate θ), by
computing the convolution uε = fε ∗ un, or

uε(r, t) =

∫ ∞
−∞

fε(t− t′)un(r, t′)dt′. (5)

The above gives us the displacement response to a “push load” (c.f.
[11]). We want an impulse response corresponding to a fε(t) force
profile. Since δ is the derivative of θ and fε can be written fε ∗ δ,
we can subsequently compute the displacement response wε to an
fε impulse force by taking a time derivative of uε, and likewise the
acceleration aε by taking more derivatives:

wε(r, t) =
∂uε
∂t

, (6)

aε(r, t) =
∂3uε
∂t3

. (7)

We use the regularization function fε defined by

gε(t) =
csε

π(c2st2 + ε2)
; (8)

fε(t) = 2gε(t)− g2ε(t). (9)

We chose this function for several reasons. Firstly, it approxi-
mates a δ(t) function as ε → 0: for all ε, the total impulse ap-
plied is 1, and as ε gets smaller, a larger proportion of the impulse
is applied over a smaller amount of time (

∫
|t|<
√
ε
fε(t) → 1 as

ε → 0); see Figure 3 for an illustration. Secondly, it is a smooth
approximation of a Hertzian half-sine contact acceleration profile,
with timescale 4ε/cs (see Section 4.1). Thirdly, while gε is only
second-order (gε(t) = O(t−2) as t → ∞), we can form linear
combinations of gε with varying ε to achieve higher-order falloff,
just like the multiscale extrapolation in [15]; in this case, our fε
achieves fourth-order falloff (O(t−4)).

The final reason is that we can analytically derive the closed-
form expression for uε(r, t) that is provided in (28) of the ap-
pendix. Our regularization eliminates the three singularities at the
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Figure 3: Smoothed delta function used as the impulse force
profile fε(t). Here ε is in meters, the horizontal axis is time in
seconds, and the vertical axis is scaled force.

wavefronts and leaves an integrable, fixed 1/r singularity at the
origin. In the supplemental material1 we show that there are no
branch cut crossings (a common type of numerical artifact in com-
plex functions) when ν ≤ 0.2631. We still observe branch cut
issues when ν > 0.2631, which is when κ2

2, κ
2
3 become complex.

We recommend using a piecewise polynomial regularization func-
tion (see Conclusion Section 6.1) to deal with the branch cuts.

4. SOUND SYNTHESIS

4.1. Impulse profile approximation

Similar to [5, 16], we model the acceleration a(t) using the Hertz
contact model. To avoid a discontinuous jerk we approximate the
half-sine force with our fourth-order temporal kernel, with ε/cs set
to one-fourth the contact timescale tc:

f(t) ≈ Jfε(t), (10)

4ε = cstc = 2.87cs

(
m2

a0E∗2vn

)1/5

, (11)

where a0,m,E∗, J, vn are the object’s local radius of curvature,
mass, effective stiffness, impulse, and normal impact velocity.

4.2. Direct sound synthesis via Rayleigh integration

Assuming no scattering or absorption from nearby objects, the
Rayleigh integral [17] says the sound pressure at a point (r, z)
due to the plane vibration source is equal to

p(r, z, t) = ρ0

∫
R2

aε(r
′, t−R′/c0)

2πR′
dr′, (12)

whereR′ =
√
|r− r′|2 + z2, ρ0 is air density, and c0 is the speed

of sound in air.
We evaluate this integral numerically in Wolfram Mathemat-

ica. We found that the singularity at the origin (r = 0), mentioned
in Section 2.3, does not cause issues: to check, we experimented
with modified versions of uε where in each version we subtract out
a ramp R(r) of radius H times the singularity and add back in a
ramp CR(r) scaled to have the same average value (from analyti-
cally integrating about the origin), and we found that numerically
the results were identical to those from the unmodified uε. We
tested radii of H = 0.01 m, 0.02 m, and 0.10 m.
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4.3. Floor sound shader for FDTD acoustic wavesolvers

We implemented our floor acceleration model in a general-purpose
wavesolver [9] that incorporates the scattering of nearby objects.
It solves the acoustic wave equation with Neumann boundary con-
ditions

∂2p(x, t)

c20∂t
2

= ∇2p(x, t) +
α

c0
∇2 ∂

∂t
p(x, t), x ∈ Ω; (13)

∂np(x, t) = −ρ0an(x, t), x ∈ ∂Ω, (14)

by discretizing a region of space onto a rectangular grid and timestep-
ping it with finite differences (see [9] for details); here Ω is the air
region, ∂Ω is the boundary with objects, the subscript n indicates
the normal direction, and we set the air viscosity damping coeffi-
cient α = 2E-6 m. The wavesolver samples the boundary normal
acceleration an(x, t) through acoustic shaders.

We implemented the floor acceleration model as an “acoustic
shader” which evaluates the regularized acceleration af (r, t) due
to each contact impulse, where r is the distance, projected onto the
ground plane, between the shader’s sample point x and the floor
impact location. Since there is theoretically an object in contact
at the contact point and therefore no adjacent fluid cells, we do
not evaluate an acceleration there; therefore the singularity at the
contact point (r = 0) does not cause a problem.

For consistency, we modified the acceleration shader in [9]
to use the same smooth force profile and impulse evaluation con-
straints as our ground shader. This also corrects for any amplitude
or spectral mismatches between acceleration noise and ground sound.

5. RESULTS

Sound samples for our results are available online.1

5.1. Model Validation

The push-like volume displacement D is given by

D(t) =

∫
R2

uε(r, t) dr. (15)

We evaluate this on a scenario with a small stainless steel ball
dropped onto a medium density fiberboard ground and make sure
that the volume displacement is consistent with the unregularized
Pekeris solution. Relevant parameters are given in Table 1.

We examined the response to a push load with our temporal
regularization. Figure 2 plots the vertical displacement at a point
1 m away, and Figure 4 plots the total volume displacement. The
curves converge to the Pekeris solution as ε decreases, and asymp-
totically, each D(t) converges to the correct value as t→∞.

We also examined the volume displacement, the volume flux,
and the momentum flux in response to an impulse. These are each
defined as integrating wε, dwε/dt, and aε over the R2 plane. As
expected, their curves look like the derivatives of those in Figure 4.

5.2. Sound Synthesis Results

5.2.1. FDTD Synthesis Examples

We added our ground surface acceleration shader to the time do-
main simulation system from [9]. We also use the modal shader

1http://graphics.stanford.edu/papers/ground/

Parameter Value
Ball Material Stainless Steel (see Table 2)

Ground Material Wood (see Table 2)
Ball Diameter (2a0) 2 cm

Drop Distance 15 cm
Restitution Coefficient (κ) 0.5

Impact Location (0, 0, 0) m
Listening Location (R) (0, 0, 0.2) m

cs 2422 m/s
Contact Time (tc) 1.633E-4 s

Contact Radius (rc) 6.316E-4 m
ε = cstc/4 9.888E-2 m

Table 1: “Ball Drop” Simulation Parameters: Scenario infor-
mation for the validation, the steel ball, wood ground example in
Figure 8, and the comparisons in Table 3. The lowest frequency
nontorsional vibration mode for the steel ball is at 131 kHz, so we
omit modal sound. Note that ε is much larger than the contact ra-
dius rc, implying that temporal regularization has a much larger
smoothing effect than spatial. These parameters are used in the
rest of the results unless stated otherwise.

-2 -1 1 2
time (s)

1

3

4

5

D(t)

Volume Displacement

Pekeris

ϵ = 0.02

ϵ = 0.05

ϵ = 0.10

ϵ = 0.25

2

Figure 4: Volume displacement, D(t): Here ε is in meters, and
the vertical axis is volume displacement scaled by the same fac-
tor as in Figure 2. The modified temporal regularization with a
smoothed origin proposed in Section 4.2 has a volume displace-
ment plot that looks identical.

and the acceleration noise shader, which synthesize impact sound
for objects. We show a few notable examples in Figures 5, 6, and
7. In each example the modal sound is almost inaudible.

Figure 5 shows 13 steel balls with a 2 cm diameter hitting
a concrete ground from various heights between 3 cm and 23 cm
above ground, and Figure 6 shows these balls hitting a soil ground.
Each ball has no audible ringing modes. In both examples the
sound from the acceleration noise and the ground have similar fre-
quency spectra. The concrete ground smooths the total sound of
the steel ball collision; however, the short duration of the transient
sound makes it difficult to discern the sound spectrum. On the
other hand, the soil greatly amplifies the total sound from the steel
ball collision. Since the ball-soil collision has a longer timescale
than the ball-concrete collision, we can hear that the soil sound has
a slightly different shape than the ball sound, making the ground
relevant.

Figure 7 shows a spherical granite rock with a 30 cm diameter
dropped from a height of 25 cm above ground (centroid at 40 cm).
The only audible ringing modes are at much higher frequencies
than the contact timescale, hence they were soft, with a peak am-
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Figure 5: An example with 13 balls dropped from various heights
onto a concrete ground, simulated with our wavesolver. See the
supplemental material for the sound. Each sound (ball, ground,
combined) is normalized to 10 Pa. The listening point is at
(0.20, 0.12, 0.16) m, with the z coordinate specifying the height.

plitude of 0.106 Pa. In comparison, the acceleration noise was at a
peak amplitude of 1.76 Pa, and the ground contributed a noticeable
rumble peaking at 17.2 Pa.

5.2.2. Ball ground impact comparisons

Similar to prior work [16], we can use a closed-form expression
to model the sound from a small ball. We treat it as a compact
translating sphere, which forms an acoustic dipole source. The far-
field acoustic pressure depends on the jerk, with a 1/r falloff. The
nearfield pressure depends on the acceleration with a 1/r2 falloff.
The final expression, according to Eq (6.20) in [18], is

p(r, t) =
ρ0a

3
0 cos(θ)

2

(
−
a(t− r−a0

c0
)

r2
+

da
dt

(t− r−a0
c0

)

c0r

)
(16)

where a(t) is the acceleration of the ball at time t and θ is the angle
between the acceleration and r. We assume perfect reflection and
model it by adding the reflection image source of this ball, reflect-
ing the dipole direction and position over the y axis. The total is a
longitudinal quadrupole source for hard reflective grounds, and a
dipole source for absorptive grounds.

We model the acceleration with the same fourth-order tempo-
ral force as that used for the ground in section 4.1.

a(t) = −f(t)/m. (17)

We simply use (1 + κ)mvn as the impulse, where κ is the coeffi-
cient of restitution of the collision.

Figure 8 illustrates an ideal 2 cm steel ball, wood ground im-
pact, with their respective amplitudes. We verified the amplitudes
from our wavesolver against these amplitudes. For harder ground
materials such as concrete, or lighter object materials such as ce-
ramic, wood, or dice, the ground sound would be much softer com-
pared to the ball sound. The next section generalizes this observa-
tion.
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Steel Ball, Soil Ground Comparison: Second Impact
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Ground
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Figure 6: An example with 13 balls dropped from various heights
onto soil ground, simulated with our wavesolver. See the sup-
plemental material for the sound. Each sound (ball, ground,
combined) is normalized to 4.5 Pa. The listening point is at
(0.20, 0.12, 0.16) m.

Material Property Reference
Material E (Pa) ν ρ (kg m−3)

Stainless Steel 1.965E+11 0.27 7955
Ceramics 7.2E+10 0.19 2700
Granite 5.07E+10 0.28 2670

Concrete 1.85E+10 0.20 2250
Wood 1.1E+10 0.25 750

Plastic (ABS) 1.4E+9 0.35 1070
Soil 4.0E+7 0.25 1350

Paraffin Wax 5.57E+7 0.37 786

Table 2: Material parameters used for common materials: The
Young’s modulus is E, Poisson’s ratio is ν, and density is ρ. We
used medium density fiberboard for wood.

5.3. Impact Sound Parameter Dependence

Let us describe the impact scenario with the parameters (tc, a0, vn,
κ, Ef , νf , cs, ρb, R, θ), where the subscript f indicates ground,
b indicates ball, and (R, θ) indicate the listening point distance
and elevation angle. We hereby fix all parameters to their Table 1
values and vary just one or two of them at a time.

ρb, Ef : By algebra, the ground sound amplitude is propor-
tional to ρb/Ef , while the ball sound stays constant. Table 2 lists
these properties for common materials, and Table 3 lists the inten-
sity ratio for each material pair.

νf : We found that changing the ground Poisson’s ratio does
not significantly affect either sound amplitude.

tc: Figure 9 discusses the dependence on contact timescale for
one example. In the far field (R � c0tc) both the ground and the
ball sound intensity have similar power law dependence.

θ: Figure 11 shows the dependence on listening point angle
from the plane. As the listening point gets closer to the plane, the
ball sound gets softer at a faster rate than the ground sound.

cs: The ball sound does not depend on cs, the speed of shear
waves in the ground, and Figure 10 discusses the ground sound de-
pendence on cs. The ground amplitude increases linearly in pro-
portion to cs until a threshold ck ≈ A

√
c0R/tc determined by the
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Relative Intensities (dB) of Ground Sound Compared to Ball Sound
XXXXXXXXXball

ground Steel Ceramics Granite Concrete Wood Plastic Soil Wax

Steel -30.25 -21.30 -18.94 -11.83 -6.12 4.15 19.06 19.58
Ceramics -39.63 -30.69 -28.33 -21.22 -15.51 -5.23 9.68 10.19
Granite -39.73 -30.78 -28.43 -21.32 -15.60 -5.33 9.58 10.10

Concrete -41.21 -32.27 -29.91 -22.80 -17.09 -6.81 8.09 8.61
Wood -50.76 -41.81 -39.46 -32.34 -26.63 -16.36 -1.45 -0.93
Plastic -47.67 -38.73 -36.37 -29.26 -23.55 -13.27 1.64 2.15

Soil -45.65 -36.71 -34.35 -27.24 -21.53 -11.25 3.65 4.17
Wax -50.35 -41.41 -39.05 -31.94 -26.22 -15.95 -1.04 -0.53

Table 3: Theoretical relative intensity (dB) of ground to ball sound, for the scenario in Table 1. Ball materials are listed on the left,
ground on the top. Positive values indicate the ground was louder than the ball. Impact timescale was kept constant at 1.63E-4 s and
Poisson’s ratio at 0.25, as neither significantly affect relative amplitude. Scenarios with louder ground sound (≥ 0 dB) are highlighted
in teal , and scenarios where the ground sound can be audible (above the most sensitive JND level of -13 dB [19]) are highlighted in
light orange . Note that our overhead listening point is near the maximum relative loudness for the ball, whereas low listening angles tend

to receive more ground sound (Figure 11 expands on this relationship).
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Figure 7: An example with a 30 cm spherical granite rock dropped
from 25 cm above ground onto soil, simulated with our wave-
solver. See the supplemental material for the sound. Each sound
(rock, ground, combined) is normalized to 20 Pa. For the almost-
silent modal component, we used the modal shader used in [9] with
Rayleigh damping parameters α = 6, β = 1E-7, in SI units. The
listening point is at (0.45, 0.27, 0.48) m.

contact timescale tc and the listening point distance R.
a0, vn, κ, R: In the far field, they affect both sounds equally.

5.4. Discussion

We found that in most everyday scenarios with rigid objects and
listening points with high elevation angle, the ground sound would
be masked by the object sound: the amplitude of the ball sound is
louder, the frequency content is similar, and the contact timescale
is often too short to hear the distinct waveforms. In these scenarios,
namely the unhighlighted cells in Table 3, we can omit the ground
sound.

If the object is dense and the ground has a low shear modulus,
then the ground sound can be as loud or louder than the object’s
acceleration noise. Furthermore, the contact timescale can be slow
enough for us to hear the difference between the object and ground

0.0004 0.0006 0.0008 0.0010
time (s)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

pressure (Pa)

Ideal Ball Floor Impact Sound

Floor Sound

Ball Sound

Combined

Figure 8: Ideal unobstructed sound for a 2 cm steel ball dropped
from 15 cm impacting a wood ground with restitution coeffi-
cient 0.5. The listening point is 20 cm directly above the impact
point. The quadrupole shape of the ball sound is different from
the ground sound, but at high frequencies the frequency content
sounds similar and it is hard to tell perceptually. The ground sound
adds a significant amount of amplitude to the combined sound, and
the combined sound seems to be higher pitched than either sound.

sounds. In a few examples we examined, such as steel or granite
objects hitting wood, concrete, and soil, the modal ringing sound
for the object is too soft, but for larger, less round, and softer ob-
jects, the modal ringing sound can dominate the total power output.

6. CONCLUSION AND FUTURE WORK

We regularized the solution to Lamb’s problem to give us a closed-
form expression for ground surface acceleration. For impacts from
small balls, we used a Rayleigh integral to compute ground sound
amplitudes and compared them with object acceleration noise. Fur-
thermore, we implemented an acoustic shader in an FDTD wave-
solver to synthesize sound from generic object impacts with the
ground, combining modal sound, acceleration noise, and ground
sound. We found that the ground sound is more important when
the listening point is at a low angle, when the ground has a low
shear modulus, or when the object has a high density. Furthermore,
ground noise (similar to acceleration noise) is important only for
objects where modal ringing noise, which is louder in larger ob-
jects, was not audible. In the absence of modal sound, the relative
importance of ground sound was not affected by object size in “ball
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Figure 9: Sound dependence on contact timescales measured
overhead at z = 20 cm. For low timescales, the ball and ground
both have a τ−3 dependence; however, at high timescales, the
near-field term of the ball sound dominates, and its power falls
off as τ−3

drop” tests, notwithstanding changes in contact duration.

6.1. Limitations and future work

Our work has several limitations that motivate future work:

1. Stable numerical evaluation for general ν: Our model crosses
a discontinuous branch cut when evaluated for high ν ≥
0.2631. We were unable to express the regularized response
uε in a form that eliminates this branch cut. We explored
an alternate regularization using a piecewise polynomial
fε = (1 − (t/ε)2)n for |t| < ε, and this gives an expres-
sion that does not have the branch jump. However, we used
n = 4 to get a continuous acceleration, and the degree-8
polynomial produces a result that suffers from catastrophic
cancellation when ε is small. Future work should ensure
stable numerical evaluation for all ν values.

2. Finite-depth ground and realistic flooring: Our ground sound
model applies well for ground that is homogeneous for a
very deep layer, greater than approximately 50 m deep. For
shallower ground layers, the reflections between the layer
boundaries form resonance modes that our model does not
capture. Furthermore, when an object is dropped onto a
hard floor in a building, we hear the vibrational response
of the building. Future work could model the responses of
more realistic building and flooring structures.

3. Tangential frictional loads: We only modeled the vertical
response to a vertical load. Future work can regularize the
closed-form solutions for a vertical response to a tangential
load, such as incurred by contact friction.

4. No closed-form sound: We provided an expression for sur-
face acceleration but not the sound. Future work could de-
rive a model for the final sound based on listening position.

Figure 10: Ground sound dependence on cs measured overhead
at z = 20 cm. At low cs, the ground sound intensity is propor-
tional to c2s, and at high cs, it is constant. The knee cutoff, ck,
is about 2576 m/s. By testing a few more parameters, we exper-
imentally determined that ck ≈ A

√
c0R/tc, where c0 is the air

speed of sound, R is the listening point distance, tc is the contact
timescale, and A is a dimensionless constant between 3 and 4.
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A. DERIVATION OF REGULARIZED RESPONSE

In this derivation, we let t′ = cst, and we note that at the end, we
need to scale by the right power of cs.

gε(t
′) =

ε/π

t′2 + ε2
(18)

We want to find the convolution k′ε = gε(t
′) ∗ un(r, t′). This rep-

resents the displacement response to an arctan load, which approx-
imates the Heaviside theta load. Define U ,W,V, as the following

Uε(t′, σ) =
1

r

∫ ∞
σ

gε(t
′ − s)ds; (19)

Vε(t′, s, α) =

∫
gε(t

′ − s)√
s2 − α2

ds; (20)

Wε(t
′, s, α) =

∫
gε(t

′ − s)√
α2 − s2

ds. (21)

Integrating,

Uε(t′, σ) =
1

2r
+

1

πr
arctan

(
t′ − σ
ε

)
; (22)

Zε(t
′, α) =

√
α2 + (ε− it′)2; (23)

Vε(t′, s, α) = Re
(

1

πZε(t′, α)

(
− log(ε− i(t′ − s))

+ log(α2 − (t′ + iε)s− iZε(t′, α)
√
s2 − α2)

))
;

(24)

Wε(t
′, s, α) = Im

(
−1

πZε(t′, α)

(
− log(ε− i(t′ − s))

+ log(α2 − (t′ + iε)s+ Zε(t
′, α)

√
α2 − s2)

))
.

(25)

Check the Mathematica notebook on the website1 for verification.
Plugging in the integration limits, the convolution k′ is

k′ε(r, t
′) =

1− ν
4πµ

(
Uε(t′, ar) + Uε(t′, r)

+ 2Wε(t
′, γr, γr)−Wε(t

′, r, γr)−Wε(t
′, ar, γr)

+

3∑
j=2

(Vε(t′, r, κjr)− Vε(t′, ar, κjr))

)
. (26)

Our final expression, in terms of the original t, is

kε(r, t) = k′ε(r, cst), (27)

that is, there is no missing cs scale factor because the extra cs from
the convolution is cancelled by the missing cs from normalizing
gε. For fourth-order, we simply take

uε(r, t) = 2kε(r, t)− k2ε(r, t). (28)

In the supplemental material1 we show that when ν ∈ [0, 0.2631),
this solution does not cross any branch cuts as we vary (r, t).
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