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ABSTRACT

The ubiquity of sound synthesizers has reshaped music pro-
duction and even entirely defined new music genres. How-
ever, the increasing complexity and number of parameters
in modern synthesizers make them harder to master. Hence,
the development of methods allowing to easily create and
explore with synthesizers is a crucial need.

Here, we introduce a novel formulation of audio synthe-
sizer control. We formalize it as finding an organized latent
audio space that represents the capabilities of a synthesizer,
while constructing an invertible mapping to the space of its
parameters. By using this formulation, we show that we
can address simultaneously automatic parameter inference,
macro-control learning and audio-based preset exploration
within a single model. To solve this new formulation, we
rely on Variational Auto-Encoders (VAE) and Normalizing
Flows (NF) to organize and map the respective auditory and
parameter spaces. We introduce a new type of NF named
regression flows that allow to perform an invertible mapping
between separate latent spaces, while steering the organiza-
tion of some of the latent dimensions. We evaluate our pro-
posal against a large set of baseline models and show its su-
periority in both parameter inference and audio reconstruc-
tion. We also show that the model disentangles the major
factors of audio variations as latent dimensions, that can be
directly used as macro-parameters. Finally, we discuss the
use of our model in creative applications and its real-time
implementation in Ableton Liv

1. INTRODUCTION

Synthesizers are parametric systems able to generate audio
signals ranging from musical instruments to entirely unheard-
of sound textures. Since their commercial beginnings more
than 50 years ago, synthesizers have revolutionized music
production, while becoming increasingly accessible, even
to neophytes with no background in signal processing.
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Figure 1: Universal synthesizer control. (a) Previous meth-
ods perform direct inference from audio, which is limited
by non-differentiable synthesis and lacks high-level control.
(b) Our novel formulation states allows to learn an orga-
nized latent space z of the synthesizer’s audio capabilities,
while mapping it to the space v of its synthesis parameters.

While there exists a variety of sound synthesis types [[1]],
they all require an a priori knowledge to make the most
out of a synthesizer possibilities. Hence, the main appeal
of these systems (namely their versatility provided by large
sets of parameters) also entails their major drawback. In-
deed, the sheer combinatorics of parameter settings makes
exploring all possibilities to find an adequate sound a daunt-
ing and time-consuming task. Furthermore, there are highly
non-linear relationships between the parameters and the re-
sulting audio. Unfortunately, no synthesizer provides in-
tuitive controls related to perceptual and semantic proper-
ties of the synthesis. Hence, a method allowing an intuitive
and creative exploration of sound synthesizers has become
a crucial need, especially for non-expert users.

A potential direction taken by synth manufacturers, is to
propose macro-controls that allow to quickly tune a sound
by controlling multiple parameters through a single knob.
However, these need to be programmed manually, which
still requires expert knowledge. Furthermore, no method
has ever tried to tackle this macro-control learning task, as
this objective appears unclear and depends on a variety of
unknown factors. An alternative to manual parameter set-
ting would be to infer the set of parameters that could best
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reproduce a given target sound. This task of parameter in-
ference has been studied in the past years using various tech-
niques. In Cartwright et al. [2]], parameters are iteratively
refined based on audio descriptors similarity and relevance
feedback provided by the user. However, this approach ap-
pears to be rather inaccurate and slow. Garcia et al. [3]] pro-
posed to use genetic programming to directly grow mod-
ular synthesizers to solve this problem. Although the ap-
proach is appealing and appears accurate, the optimization
of a single target can take from 10 to 200 hours, which
makes it unusable. Recently, Yee-king et al. [4] showed
that a bi-directional LSTM with highway layers can pro-
duce accurate parameters appproximations. However, this
approach does not allow for any user interaction. All of
these approaches share the same flaws that (i) though it is
unlikely that a synthesizer can generate exactly any audio
target, none explicitly model these limitations, (ii) they do
not account for the non-linear relationships that exist be-
tween parameters and the corresponding synthesized audio.
Hence, no approach has succeeded in unveiling the true re-
lationships between these auditory and parameters spaces.
Here, we argue that it is mandatory to organize the param-
eters and audio capabilities of a given synthesizer in their
respective spaces, while constructing an invertible mapping
between these spaces in order to access a range of high-level
interactions. This idea is depicted in Figure|T]

The recent rise of generative models might provide an
elegant solution to these questions. Indeed, amongst these
models, the Variational Auto-Encoder (VAE) [5] aims to
uncover the underlying structure of the data, by explicitly
learning a latent space [Sl]. This space can be seen as a
high-level representation, which aims to disentangle under-
lying variation factors and reveal interesting structural prop-
erties of the data [5) 6]. VAEs address the limitations of
control and analysis through this latent space, while be-
ing able to learn on small sets of examples. Furthermore,
the recently proposed Normalizing Flows (NF) [[7] allow to
model highly complex distributions in the latent space. Al-
though the use of VAEs for audio applications has only been
scarcely investigated, Esling et al. [8] recently proposed a
perceptually-regularized VAE that learns a space of audio
signals aligned with perceptual ratings via a regularization
loss. The resulting space exhibits an organization that is
well aligned with perception. Hence, this model appears as
a valid candidate to learn an organized audio space.

In this paper, we introduce a radically novel formula-
tion of audio synthesizer control by formalizing it as the
general question of finding an invertible mapping between
two learned latent spaces. In our case, we aim to map the
audio space of a synthesizer’s capabilities to the space of
its parameters. We provide a generic probabilistic formal-
ization and show that it allows to address simultaneously
the tasks of parameter inference, macro-control learning,
audio-based preset exploration and semantic dimension dis-
covery within a single model. To elegantly solve this for-
mulation, we introduce conditional regression flows, which

map a latent space to any given target space, while steering
the organization of some dimensions to match target distri-
butions. Our complete model is depicted in Figure 2]
Based on this formulation, parameter inference simply
consists of encoding the audio target to the latent audio
space that is mapped to the parameter space. Interestingly,
this bypasses the well-known blurriness issue in VAEs as
we can generate directly with the synthesizer. We evaluate
our proposal against a large set of baseline models and show
its superiority in parameter inference and audio reconstruc-
tion. Furthermore, we show that our model is the first able
to address the new task of automatic macro-control learn-
ing. As the latent dimensions are continuous and map to
the parameter space, they provide a natural way to learn the
perceptually most significant macro-parameters. We show
that these controls map to smooth, yet non-linear param-
eters evolution, while remaining perceptually continuous.
Furthermore, as our mapping is invertible, we can map syn-
thesis parameters back to the audio space. This allows in-
tuitive audio-based preset exploration, where exploring the
neighborhood of a preset encoded in the audio space yields
similarly sounding patches, yet with largely different pa-
rameters. Finally, we discuss creative applications of our
model and real-time implementation in Ableton Live.

2. STATE-OF-ART

2.1. Generative models and variational auto-encoders

Generative models aim to understand a given set x € R%
by modeling the underlying probability distribution of the
data p(x). To do so, we consider latent variables defined in
a lower-dimensional space z € R4 (d, < dy), a higher-
level representation that could have led to generate a given
example. The complete model is defined by the joint dis-
tribution p(x,z) = p(x|z)p(z). Unfortunately, real-world
data follow complex distributions, which cannot be found
analytically. The idea of variational inference (VI) is to
solve this problem through optimization by assuming a sim-
pler approximate distribution ¢4(z|x) € Q from a family of
approximate densities [9]. The goal of VI is to minimize the
difference between this approximation and the real distribu-
tion, by minimizing the Kullback-Leibler (KL) divergence
between these densities

a5 (2lx) = argming 1. o D1 (5 (2x) || p (2]x) ]

By developing this KL divergence and re-arranging terms
(the detailed development can be found in [5]]), we obtain

logp(x) — D [44(2x) || p(2]x)]
= E,[logp(x|z)] — Dir[gs(zlx) | p(z)] (D)

This formulation describes the quantity we want to model
log p(x) minus the error we make by using an approximate
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q instead of the true p. Therefore, we can optimize this alter-
native objective, called the evidence lower bound (ELBO)

Loy = E[logpo(x|2)] — 8- Dkr[qs(2lx) || po(2)] (2)

The ELBO intuitively minimizes the reconstruction error
through the likelihood of the data given a latent log pg (x|z),
while regularizing the distribution g4 (z|x) to follow a given
prior distribution py(z). We can see that this equation in-
volves ¢, (z|x) which encodes the data x into the latent
representation z and a decoder py(x|z), which generates
x given a z. This structure defines the Variational Auto-
Encoder (VAE), where we can use parametric neural net-
works to model the encoding (q4) and decoding (pe) distri-
butions. VAEs are powerful representation learning frame-
works, while remaining simple and fast to learn without re-
quiring large sets of examples [10].

However, the original formulation of the VAE entails
several limitations. First, it has been shown that the KL
divergence regularization can lead both to uninformative la-
tent codes (also called posterior collapse) and variance over-
estimation [11]]. One way to alleviate this problem is to rely
on the Maximum Mean Discrepancy (MMD) instead of the
KL to regularize the latent space, leading to the Wasser-
steinAE (WAE) model [12]. Second, one of the key aspect
of VI lies in the choice of the family of approximations. The
simplest choice is the mean-field family where latent vari-
ables are mutually independent and parametrized by distinct
variational parameters g(z) = H;nzl g;(z;). Although this
provide an easy tool for analytical development, it might
prove too simplistic when modeling complex data as this as-
sumes pairwise independence among every latent axis. Nor-
malizing flows alleviate this issue by adding a sequence of
invertible transformations to the latent variable, providing a
more expressive inference process.

2.2. Normalizing flows

In order to transform a probability distribution, we can rely
on the change of variable theorem. As we deal with prob-
ability distributions, we need to scale the transformed den-
sity so that it still sums to one, which is measured by the
determinant of the transform. Formally, let z € R% be a
random variable with distribution ¢(z) and f : R¢ — R?
an invertible smooth mapping. We can use f to transform
z ~ q(z), so that the resulting random variable z’ = f(z)
has the following probability distribution

-1 -1
of det% 3)
0z

det
¢ oz’

q(z') = q(z) = q(2)

where the last equality is obtained through the inverse func-
tion theorem. We can perform any number of transforms to

obtain a final distribution z; ~ qx(zx) given by

k -1
of;
qk(zk) :qo(fl_lo...ofk_l(zk)) det éf; ‘
i=1 v
4
k —1
ofi
= QO(ZO) 71211 detaZi_l

This series of transformations, called a normalizing flow [1]],
can turn a simple distribution into a complicated multimodal
density. For practical use of these flows, we need transforms
whose Jacobian determinants are easy to compute. Interest-
ingly, Auto-Regressive (AR) transforms fit this requirement
as they lead to a triangular Jacobian matrix. Hence, dif-
ferent AR flows were proposed such as Inverse AR Flows
(IAF) [13] and Masked AR Flows (MAF) [[14]

Normalizing flows in VAEs. Normalizing flows allow
to address the simplicity of variational approximations by
complexifying their posterior distribution [[7]]. In the case of
VAEs, we parameterize the approximate posterior distribu-
tion with a flow of length K, ¢4(z|x) = ¢k (zk). and the
new optimization loss can be simply written as an expecta-
tion over the initial distribution go(z)

L =Ey,(zx) [log g4(z|x) — log p(x, )]
= qu(zo) [hl qo (ZO)] - qu(zo) [log p(X7 ZK)]

‘ o 5)
— ]qu(zo) [Z log i ]

i=1 0zi-1
The resulting objective can be easily optimized since qq is
still a Gaussian from which we can easily sample. However,
the final samples z;, used by the decoder are drawn from a
more complex distribution.

det

3. OUR PROPOSAL

3.1. Formalizing synthesizer control

Considering a set of audio samples D = {x;},i € [1,n]
where the x; € R? follow an unknown distribution p(x),
we can define latent factors z € R* to model the joint dis-
tribution p(x, z) = p(x | z)p(x) as detailed in Section 2.1]
In our case, some x € D, C D inside this set have been
generated by a given synthesizer. This synthesizer defines a
generative function fs(v;p,i) = X where v € R* is a set of
parameters that produce X at a given pitch p and intensity .
However, in the general case, we know that if x; ¢ D, then
x; = fs(v) + € where ¢ models the error made when trying
to reproduce any audio x; with a given synthesizer. Finally,
we consider that some audio examples are annotated with
a set of categorical semantic tags t; = {0,1}", which de-
fine high-level perceptual properties that separate unknown
latent factors z and rarget factors t. Hence, the complete
generative story of a synthesizer can be defined as

p(x,v,t,2) = p(x|v,t,z)p(v[t,z)p(t|z)p(z) (6)
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Figure 2: Universal synthesizer control. We learn an organized latent audio space z of a synthesizer capabilities with a VAE
parameterized with NF. This space maps to the parameter space v through our proposed regression flow and can be further
organized with metadata targets t. This provides sampling and invertible mapping between different spaces.

This very general formulation entails our original idea that
we should uncover the relationship between the latent au-
dio z and parameters v spaces by modeling p(v,z). The
advantage of this formulation is that the reduced dimen-
sionality R* < R” of the latent z simplifies the problem
of parameters inference, by relying on a more adequate and
smaller input space. Furthermore, this formulation also pro-
vides a natural way of learning macro-controls by inferring
p(v|z) in the general case, where separate dimensions of z
are expected to produce smooth auditory transforms. Al-
though we provide a complete formalization, due to space
constraints, we do not detail the use of metadata t in our
model. We provide this information in the supporting web-
page and companion article. Here, we consider that tags t
are included in the latent factors z and define the model as

po(x,v,2) = pe(x|v,2z)pe(V|z)pe(2) @)

3.2. Mapping latent spaces with regression flows

In order to map the latent z and parameter v spaces, we first
separate our formulation so that

= log(pe(x|v,2z)pe(z)) +log ps(viz) (8)

This allows to separately model the variational approxi-
mation detailed in Section [2.1] while solving separately the
inference problem py(v|z). To address this inference, we
need to find the optimal parameters 1 of a transform fy, so
that v = fy(z) + €, where € ~ N(0, C,)) models the in-
ference error as a zero-mean additive Gaussian noise with
covariance C,. Here, we assume that the covariance de-
composes into C; ' = Y. exp(\;)Q;, where Q; are fixed
basis functions and A are hyperparameters. Therefore, the
full joint likelihood that we need to optimize is given by

Ly, x=1log[pe(v|fy, A 2)pe(fyp|z)pe(Az)] ()

log pe(x,v,z)

If we know the optimal transform f,, and parameters A,
the likelihood of the data can be easily computed as

p9(v|f¢7)‘7z):N(V;f¢(Z),Cv) (10)

However, the two posteriors py(fy|z) and pg(A|z) re-
main intractable in the general case. In order to solve this
issue, we rely again on variational inference by defining an
approximation gy ( fy, A|v,z) (see Section2.1)) and assume
that it factorizes as q(fy, A|v,2) = ¢(fy|v,2)q(A|v,2).
Therefore, our final inference problem is

Lf«,b)x = log [pa(V|f¢7 A, Z)}
+ Dk (96 (|2, V) [|po(fp|2)] (11)
+ Dki [96(Al2, v)||lpo(A|2)] (12)

Hence, we can optimize our approximations through the KL
divergence if we find a closed form. To solve for A, we
use a Gaussian distribution for both the prior py(A|z) =
N (A, x, Cy) and posterior gy (A2, v) = N (X, pq, Cy). To
solve this issue, we introduce the idea of regression flows.
This allows to obtain a simple analytical solution. However,
the second part of the objective might be more tedious. In-
deed, to perform an accurate inference, we need to rely on a
complicated non-linear function, which cannot be assumed
to be Gaussian. To address this issue, we introduce the idea
of regression flows. We consider that the transform fp(z) is
a normalizing flow (see Section [2.T) and provides two dif-
ferent way of optimizing the approximation.

Posterior parameterization. First, we follow a reasoning
akin to the original formulation of normalizing flows by pa-
rameterizing the posterior g4 (fy|z, v) with a flow gz (v).
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Hence, by developing the KL expression, we obtain

Dk [0 (fyl2, v)llp(fy|2)] = Eq, [log go(vo)]
- o
;log Vi

Hence, we can now safely rely on Gaussian priors for
go(vo) and p(vy). This formulation allows to consider v as
a transformed version of z, while being easily invertible as
zZ = f[;‘ll] (v). We denote this version as Flow,st.

Conditional amortization. Here, we consider that the
parameters 1) of the flow are random variables that are op-
timized by decomposing the posterior KL objective as

Dxw [g0(fy|2, V) |Ip(fy|2)] = Dk g0 (¢]2)[p(¢]2)]

k
of;
+ Eqgo(vo) [Z log f 1 (14)

i=1 Ovi-1
As we rely on Gaussian priors for the parameters, this
additional KL term can be computed easily. In this version,
denoted F'low,onq, parameters of the flow are sampled from
their distributions before computing the resulting transform.

det

— B, llog p(ve)] — Eq 5

1 13)

det

4. EXPERIMENTS

4.1. Dataset

Synthesizer. We constructed a dataset of synthesizer sounds
and parameters, by using an off-the-shelf commercial syn-
thesizer Diva developed by U-H It should be noted that
our model can work for any synthesizer, as long as we ob-
tain couples of (audio, parameters) as input. We selected
Diva as (i) almost all its parameters can be MIDI-controlled,
(ii) large banks of presets are available and (iii) presets in-
clude well-organized semantic tags pairs. The factory pre-
sets for Diva and additional presets from the internet were
collected, leading to a total of roughly 11k files. We manu-
ally established the correspondence between synth and MIDI
parameters as well as the parameters values range and distri-
butions. We only kept continuous parameters and normalize
all their values to [0, 1]. All other parameters are set to their
fixed default value. Finally, we performed PCA and manual
screening to select increasing sets of the most used 16, 32
and 64 parameters. We use RenderMarﬂ to batch-generate
all the audio files by playing the note for 3 sec. and record-
ing for 4 sec. to capture the release of the note. The files are
saved in 22050Hz and 16bit floating point format.

Audio processing. For each sample, we compute a 128
bins Mel-spectrogram with a FFT of size 2048 with a hop of
1024 and frequency range of [30,11000]. We only keep the
magnitude of the spectrogram and perform a log-amplitude
transform. The dataset is randomly split between a train-
ing (80%), validation (10%) and test (10%) set before each

Zhttps://u-he.com/products/diva/
3https://github.com/fedden/RenderMan

training. We repeat the training k times to perform k-fold
cross-validation. Finally, we perform a corpus-wide zero-
mean unit-variance normalization based on the train set.

4.2. Models

Baseline models. In order to perform an objective evalua-
tion of our proposal, we implemented several recent high-
capacity models similar to [4]. We implement a 5-layers
M LP with 2048 hidden units per layer, Exponential Lin-
ear Unit (ELU) activation, batch normalization and dropout
with p = .3. The final layer is a sigmoid activation. We
implement a gated variant of this model, denoted M LP,.
We implement a convolutional model composed of 5 lay-
ers with 128 channels of strided dilated convolutions with
kernel size 7, stride 2 and an exponential dilation factor of
2! with batch normalization and ELU activation. The con-
volutions are followed by a 3-layers MLP identical to the
previous model. We also implement the gated variant de-
noted C N N,. Finally, we implemented a variant of Resid-
ual Networks, with parameters settings identical to C NN
and denote this model ResCNN.

Our models. We implemented various *AE architec-
tures to evaluate different aspects of our proposal. To per-
form a fair comparison, we rely on the same setup as be-
fore, but halve the number of parameters to obtain roughly
the same capacity as the baselines. First, we implement a
simple deterministic AFE without regularization. We imple-
ment the VAFE by adding a KL regularization to the latent
space and the WAE by replacing the KL by the MMD.
Finally, we implement a V AE;,,, by adding a normaliz-
ing flow composed of 16 successive IAF transforms to the
V AFE latent posterior. All AEs map to a latent space of di-
mensionality equal to the number of synthesis parameters.
For probabilistic models, we perform warmup [10] by lin-
early increasing the regularization S from 0 to 1 for 100
epochs. We also apply the same weight annealing for the
regression loss. We first evaluate all these models by using
a simple 2-layers MLP to predict the parameters based on
the latent space. Finally, we evaluate our regression flows
by adding them to the V AEy,,,,, with an IAF of length 16.

Optimization. We train all models for 500 epochs with
the ADAM optimizer, initial learning rate of 0.0002, Xavier
initialization and a scheduler that halves the learning rate if
the validation loss stalls for 20 epochs. With this setup, the
most complex V AEy,,, with regression flows only needs
5 hours to complete training on a NVIDIA Titan Xp GPU.

5. RESULTS

5.1. Parameters inference

We compare the accuracy of our proposal with all baseline
models on the parameters inference task. To do so, we eval-
uate the distance between predicted parameters and their
real values in the test dataset, by computing the magnitude-
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Parameter Audio

MSE, SC MSE
MLP | 0236 =+ .44 | 6226 =£.13 | 9445 =+3.1
MLP, | 0.195 £.45 | 1731 £.31|7.787 =19
CNN | 0171 +£.43 | 1372 +£.29 6329 =+19
CNN,; | 0174 £ .44 | 1245 +£.28| 6496 £2.0
ResCNN | 0.191 + .43 | 1.004 +.35]| 6422 +£1.9
AFE | 0.181 +.40 | 0.893 £.13 | 5557 +1.7
VAE | 0.182 +£32 | 0.810 £.03 | 4901 =£14
WAE | 0159 +.37 | 0787 .05 | 4979 =15
VAE; | 0199 +£32 | 0.838 +£.02 | 4975 <14

Flowpes | 0197 £31 | 0752 £.05 | 4409 =£1.6
Floweopg | 0.199  £31 | 1.085 £.02 | 6303 +2.1

Table 1: Comparison between baseline, *AEs with MLP
regression and our proposed regression flows on the test set.
Parameters accuracy is evaluated with normalized MSE and
the audio with Spectral Convergence (SC) and MSE.

normalized Mean Square Error (M SE,,). We average these
results across k-folds and report across-runs variance. More
importantly, we evaluate the distance between the audio syn-
thesized based on these inferred parameters and the original
audio through the Spectral Convergence (SC) and MSE dis-
tances, where SC is the Frobenius norm normalized over
time and frequency. The results are displayed in Table[T}

As we can see, baseline models are able to perform an
accurate approximation of the parameter vectors, with the
CN N providing the best inference. Based on this parame-
ter distance criterion solely, the best results are obtained by
the deterministic WAE model that outperforms traditional
approaches. Although it would seem, at first, that our for-
mulation only provides a marginal improvement on the pa-
rameters inference task, and that our proposal is even out-
performed by baseline models, the analysis of the corre-
sponding synthesized audio tells an entirely different story.
Indeed, all AEs approaches strongly outperform the base-
line models when it comes to audio accuracy, with the best
results obtained with our probabilistic formulation Flowpst.
These results show that, even though AE models do not pro-
vide an exact approximation of parameter vectors, they are
able to account for the importance of these different param-
eters on the corresponding audio result. An even more inter-
esting observation is that our proposed Flowy,s; is outper-
formed by most baseline models on the parameters accuracy
distance. However, it strongly outperforms all other meth-
ods on the resulting audio approximation accuracy. This
supports our original hypothesis that learning the latent space
of the synthesizer audio capabilities is a crucial component
to understand its behavior. Furthermore, this might imply
that our model can provide closely-sounding parameter set-
tings based on the audio latent space, even though the pa-
rameters are quite different. This assumption is evaluated
in the following section. Finally, this analysis also seems to
be supported by the across-run variance, where probabilis-
tic models obtain a more consistent accuracy, indicating that

) O
Original | Res-CNN VAE Flow

Params

3

Wave

Mel
!'____'H'l____\'\r___'\

Wave

ARF

Figure 3: Reconstruction analysis. Comparing parameters
inference and corresponding synthesized audio on the test
dataset between the best performing models.

they provide a better generalization.

5.2. Reconstructions and latent space

We provide an in-depth analysis of the relations between
inferred parameters and corresponding synthesized audio to
support our previous claims. First, we selected two samples
from the test set and compare the inferred parameters and
synthesized audio in Figure[3]

As we can see, although the C'N N provides a close in-
ference of the parameters, the synthesized approximation
completely misses important structural aspects, even in sim-
pler instances as the slow ascending attack in the second
example. This confirms that direct inference models are
unable to assess the relative impact of parameters on the
audio. Indeed, the errors in all parameters are considered
equivalently, even though the same error magnitude on two
different parameters can lead to dramatic differences in the
synthesized audio. Oppositely, even though the parameters
inferred by the VAE are quite far from the original preset,
the corresponding audio is largely closer. This indicates
that the latent space provides knowledge on the audio-based
neighborhoods of the synthesizer. Therefore, this allows to
understand the impact of different parameters in a given re-
gion of the latent audio space.

To evaluate this hypothesis, we encode two distant pre-
sets in the latent audio space and perform random sampling
around these points to evaluate how local neighborhoods are
organized. We also analyze the latent interpolation between
those examples. The results are displayed in Figure[4]
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Figure 4: Latent neighborhoods. We select two examples
from the test set that map to distant locations in the latent
space z and perform random sampling in their local neigh-
borhood to observe the parameters and audio. We also dis-
play the latent interpolation between those points.

As we can see, our hypothesis seems to be confirmed
by the fact that neighborhoods are highly similar in terms
of audio but have a larger variance in terms of parameters.
Interestingly, this leads to complex but smooth non-linear
dynamics in the parameters control.

5.3. Macro-parameters learning

Our formulation is the first to provide a continuous mapping
between the audio z and parameter v spaces of a synthe-
sizer. As latent VAE dimensions has been shown to disen-
tangle major data variations, we hypothesized that we could
directly use z as macro-parameters defining the most inter-
esting variations in a given synthesizer. Hence, we intro-
duce the new task of macro-parameters learning by map-
ping latent audio dimensions to parameters through p(v|z),
which provides simplified control of the major audio varia-
tions for a given synthesizer. This is depicted in Figure 3]

We show the two most informative latent dimensions
z based on their variance. We study the traversal of these
dimensions by keeping all other fixed at O to assess how
z defines smooth macro-parameters through the mapping
p(v|z). We report the evolution of the 5 parameters with
highest variance (top), the corresponding synthesis (middle)
and audio descriptors (bottom).

First, we can see that latent dimension corresponds to
very smooth evolutions in terms of synthesized audio and
descriptors. This is coherent with previous studies on the
disentangling abilities of VAEs [6]. However, a very in-
teresting property appear when we map to the parameter
space. Although the parameters evolution is still smooth,
it exhibits more non-linear relationships between different
parameters. This correlates with the intuition that there are

lots of complex interplays in parameters of a synthesizer.
Our formulation allows to alleviate this complexity by au-
tomatically providing macro-parameters that are the most
relevant to the audio variations of a given synthesizer. Here,
we can see that the z3 latent dimension (left) seems to pro-
vide a percussivity parameter, where low values produce a
very slow attack, while moving along this dimension, the
attack becomes sharper and the amount of noise increases.
Similarily, z; seems to define an harmonic densification pa-
rameter, starting from a single peak frequency and increas-
ingly adding harmonics and noise.

5.4. Creative applications

Our proposal allows to perform a direct exploration of pre-
sets based on audio similarity. Indeed, as the flow is invert-
ible, we can map parameters to the audio space for explo-
ration, and then back to parameters to obtain a new preset.
Furthermore, this can be combined with vocal sketch con-
trol where the user inputs vocal imitations of the sound that
he is looking for. This allows to quickly produce an ap-
proximation of the intended sound and then exploring the
audio neighborhood of the sketch for intuitive refinement.
We embedded our model inside a MaxMSP external called
flow_synth™ by using the LibTorch API and further in-
tegrate it into Ableton Live by using the Max4Live interface.

6. CONCLUSION

In this paper, we introduced several novel ideas including
reformulating the problem of synthesizer control as match-
ing the two latent space defined as the user perception space
and the synthesizer parameter space. We showed that our
approach outperforms all previous proposals on the seminal
problem of parameters inference. Our formulation also nat-
urally introduces the original tasks of macro-control learn-
ing, audio-based preset exploration and semantic parame-
ters discovery. This proposal is the first to be able to simul-
taneously address most synthesizer control issues at once.

Altogether, we hope that this work will provide new
means of exploring audio synthesis, sparkling the develop-
ment of new leaps in musical creativity.
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