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ABSTRACT

Advances in deep learning have led to novel, state-of-the-art tech-
niques for blind source separation, particularly for the applica-
tion of non-stationary noise removal from speech. In this paper,
we show how a simple reformulation allows us to adapt blind
source separation techniques to the problem of speech dereverber-
ation and, accordingly, train a bidirectional recurrent neural net-
work (BRNN) for this task. We compare the performance of the
proposed neural network approach with that of a baseline dere-
verberation algorithm based on spectral subtraction. We find that
our trained neural network quantitatively and qualitatively outper-
forms the baseline approach.

1. INTRODUCTION

Reverberation is an effect that can be created naturally when a
source sound is reflected off various surfaces before reaching an
observer (e.g. a microphone). The characteristics of this reverber-
ation are defined by its acoustic environment (the dimensions and
objects in a space, their material properties, etc.), as well as the po-
sitions of the source and observer in this environment. Though de-
sirable in some creative and musical contexts, reverberation has the
overall effect of reducing intelligibility, which may be particularly
undesirable for speech applications, such as telecommunications,
automated voice systems, and dialogue editing in post-production.
Dereverberation is the process of automatically removing rever-
beration from audio signals. It is an extremely difficult problem,
as neither the source signal nor the characteristics of the acous-
tic environment are known a priori. Moreover, moving sources
or microphones can induce time-varying reverberation effects and
further complicate its removal.

Standard algorithms for speech dereverberation either exploit
properties of speech, or attempt to blindly estimate the reverberant
channel [1]. In the former case, algorithms explicitly track har-
monic content or leverage linear predictive coding (LPC) of speech
to estimate components of the underlying direct-path speech sig-
nal [2]. In contrast, blind channel estimation methods generally
involve an explicitly parameterized model of the reverberation pro-
cess, techniques for estimating its parameters, and finally, a reverb
removal step based on this parameter estimation through some
form of inverse filtering. Moreover, when multiple microphones
are available, these algorithms leverage beamforming techniques
to further improve reverb cancellation [3], though this is not ex-
pected to be the case for most practical applications. The perfor-
mance of existing dereverberation algorithms is limited by the flex-
ibility of their model assumptions and the ability to accurately es-
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timate parameters over a wide range of applicable scenarios. They
are also laborious to develop and may require a fair amount of in-
tensive hand-tuning.

Source separation techniques using deep learning have become
increasingly popular, particularly for the application of separating
speech from non-stationary noise [4]. Arguably the most com-
mon source separation approaches involve time-frequency mask-
ing, wherein models are trained to estimate the amount of speech
and noise present in each spectrogram bin, and accordingly cre-
ate a time-varying masking filter to separate speech from noise
through Wiener filtering [5]. To this end, recurrent neural network
(RNN) architectures have been shown to be extremely effective,
as they are a natural choice for modeling sequential data [6]. Bidi-
rectional RNNs (BRNNs) can further improve separation quality
by performing a forward and backward pass over the data, thus
incorporating future temporal context at the cost of offline (non-
realtime) operation [7].

In this paper, we propose the adaptation of blind source sepa-
ration techniques using deep learning for single-channel derever-
beration. One of the main advantages of this method, in addition
to its performance, is that we no longer require learning an explicit
reverberation profile, but instead simply learn to distinguish dry
and reverberant signal components through several synthesized ex-
amples observed during network training. With a targeted interest
in dialogue editing for post-production, we deliberately limit our-
selves to speech signals.

The rest of this paper is structured as follows: We review
a baseline dereverberation algorithm based on spectral subtrac-
tion [8], and outline our proposed neural network approach in
Section 2. We compare the performance of our neural network
solution against the baseline algorithm in terms of reverberation
reduction and speech intelligibility in Section 3. Finally, we draw
conclusions and allude to future work in Section 4.

2. DEREVERBERATION ALGORITHMS

We consider monaural speech signals and model their reverber-
ation by the convolution y(t) = h(t) ∗ s(t), where y(t) is the
observed reverberated signal, h(t) is the impulse response of the
acoustic environment, factoring the position of the source and ob-
server in said environment, and s(t) is the direct-path speech sig-
nal. The dereverberation process is a blind deconvolution in which
we attempt to find an estimate ŝ(t) from y(t). Rather than op-
erating on the time-domain waveform, both the baseline and pro-
posed neural network solutions operate primarily on the short-time
Fourier transform (STFT) magnitude spectrogram of y(t), denoted
as Y = [y1,y2, ...,yT ] ∈ Rd×T , where d is the number of fre-
quency bins and T is the number of STFT time frames.
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Figure 1: Speech dereverberation neural network architecture.

2.1. Baseline Algorithm

The baseline dereverberation algorithm uses short-time spectral at-
tenuation with directly calculated spectral masks. In this case, the
multi-path signal is modeled as a first-order recursive filter that
“smears” the spectrogram in time, defined as

rt = αst + (1− α)rt−1, (1)

where t is the STFT frame index, st is the magnitude spectrum of
the direct path signal, rt is the magnitude spectrum of the multi-
path signal, and α is a coefficient related to the reverberation time
(RT60). This implies an exponential model for the reverberation
process, which is considered to be an adequate assumption for a
large number of reverberation types. The observed reverberant
signal yt at time t is a mixture of the direct and multi-path sig-
nals defined as

yt = st + βrt, (2)

where β is the wet-to-dry ratio coefficient controlling the relative
amount of reverberation. Assuming that the reverberation param-
eters α and β are known, we can easily invert (1) and (2) to com-
pute an estimate of the dry signal spectral magnitude ŝt from yt.
The obtained signal-to-noise ratio ŝt/yt can be used in a spectral
attenuation algorithm with extra time-frequency smoothing for re-
duction of “musical noise” artifacts [8]. In our implementation, α
is frequency-independent, while β is independently estimated in 4
frequency bands. Parameter estimation is an offline process which
analyzes an entire audio waveform. The parameter α is estimated
from a histogram of spectral decay rates, while β is estimated in
each frequency band such that the resulting spectral subtraction
maximally reduces the energy of yt while remaining non-negative.

2.2. Neural Network Algorithm

For any practical application, we can consider impulse responses
h(t) normalized such that h(0) = 1. This allows us to reformulate
the reverberation process as

y(t) = s(t) + h0(t) ∗ s(t) = s(t) + n(t), (3)

where

h0(t) =

{
0, t = 0,

h(t), otherwise
(4)

and n(t) is the multi-path signal. As such, we have converted
the problem of dereverberation into one of blind source separa-
tion, and can leverage advances in deep learning which we have
successfully used to this end [7, 9]. Note that, in contrast to (2),
the frequency-dependent wet-to-dry ratio β is simply embedded in
n(t) and its respective magnitude spectrum nt (e.g. nt = βrt).

In general, one of the attractive features of a deep learning-based
approach is that we can forego the need to define an explicit param-
eterization of the reverberation process, easing design and giving
flexibility to perform well over a wider range of possible reverber-
ation types.

Given a training set with examples of isolated direct-path and
multi-path speech signals, we create mixtures with known ground
truth to learn a mapping that estimates the direct-path signal ŝ(t)
from the reverberated mixture y(t). We use the magnitude ratio
mask as a time-varying filter for separating dry and reverberated
speech, which is defined as

mt =
st

st + nt
, (5)

where the division operation in (5) is performed element-wise. Be-
cause magnitude spectra st and nt are nonnegative, the mask ele-
ments mt are in the interval [0, 1]. The output of our neural net-
work is m̂t, which we use to obtain estimated magnitude spectra
for separated direct-path and multi-path speech, i.e.,

ŝt = m̂t � yt, (6)
n̂t = (1− m̂t)� yt, (7)

where � represents an element-wise product. For inference, we
use (6) to obtain the estimated time-domain waveform ŝ(t) through
the inverse STFT. This usually involves using phase information
taken from the noisy mixture y(t), which can introduce some no-
ticeable artifacts. To improve upon this, we use the mixture phase
as our initial estimate of the direct-path phase, and apply a few
iterations of the Griffin-Lim algorithm [10]. Though not strictly
necessary for inference (unless we, for some reason, want to retain
a portion of the multi-path signal in the processed output), we still
make use of (7) for network training.

We estimate m̂t using a bidirectional recurrent neural network
architecture as depicted in Figure 1. At 48 kHz, spectrograms are
computed with Hann-windowed FFTs of size 2048 and a stride of
512. A stack of bidirectional gated recurrent units (BGRU) [11]
take the reverberated mixture spectrogram as input, and produce
outputs which incorporate temporal context from both past and
future spectrogram frames. We opt for a non-causal architecture
because their lookahead capabilties allow them to perform better
than their causal counterparts, and because the baseline approach
already required an initial offline learning pass. The output of the
BGRU stack is projected to the appropriate number of frequency
bins by means of a dense layer, whose sigmoid activation ensures
that spectral masks are in the desired [0, 1] range. Several studies
on neural network-based speech separation have shown the util-
ity of using the error in the estimated spectrum ŝt (as opposed to
the error in the estimated mask m̂t) as the network training ob-
jective [4, 5, 12]. To this end, a common objective function for
source separation compares ŝt and st in a mean-squared sense. As
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Table 1: (SDR/SI-SNR) metrics as a function of SNR.

Method −5dB 0dB 5dB 10dB 15dB
Mixture −4.2/− 5.3 0.4/− 0.2 5.4/4.9 10.3/ 9.9 15.3/15.0
Baseline −2.3/− 3.6 2.6/ 1.7 7.0/6.2 11.1/10.4 15.7/15.1
Proposed 1.3/− 0.4 5.6/ 4.5 9.6/8.7 13.7/13.1 17.6/17.1

Oracle 4.8/ 3.1 8.1/6.9 11.6/10.7 15.3/14.5 19.1/18.5

Table 2: ∆STOI metric as a function of SNR.

Method −5dB 0dB 5dB 10dB 15dB
Baseline 4.5 2.9 0.6 0.4 0.3
Proposed 16.2 9.3 3.8 1.5 0.5

Oracle 38.6 17.9 7.3 2.8 1.1

in [4, 7], we use the modified mean-squared error function

J =
1

T

T∑
t=1

(
||ŝt − st||22 + ||n̂t − nt||22−

γ||st − n̂t||22 − γ||nt − ŝt||22
)
, (8)

where the parameter γ provides a trade-off between interference
and artifacts caused by the source separation process. We found
that the addition of cross-term penalties helped to improve dere-
verberation performance at lower wet-to-dry ratios.

3. EXPERIMENTAL RESULTS

3.1. Dataset description

While there are several speech datasets available for machine learn-
ing research, most of them are band-limited (usually sampled at
16 kHz), and are insufficient for the full audio rate processing
needs of post-production. With a target sampling rate of 48 kHz in
mind, we have opted to use speech from the pitch tracking corpus
in [13], the processed speech from the DAPS experiments [14],
and the TSP speech dataset [15]. We have also supplemented
our clean speech training with several hours of audio from iZo-
tope tutorial videos. While these are not truly anechoic speech
recordings, they were found to be representative enough to serve
as “ideal” dereverberated outputs of our system. In addition to the
speech dataset, we have gathered reverb impulse responses (RIRs)
from many open sources. We have also developed a RIR generator
factoring different reverb characteristics (RT60, wet-to-dry ratio,
etc.), and added hundreds of simulated RIRs to our dataset. We
considered reverberation types and parameter ranges that resemble
the naturally occurring environments that the system was targeted
for.

3.2. Performance assessment

We quantitatively compared the performance of the baseline and
our proposed neural network dereverberation algorithms on a test
dataset consisting of audio from held-out speakers and RIRs not
seen during training. Algorithm performance was evaluated at a
number of different SNRs (i.e. dry-to-wet ratios), ranging from
−5 to +20 dB. To evaluate performance in terms of reverberation
reduction, we used the signal-to-distortion ratio (SDR) and signal-
invariant signal-to-noise ratio (SI-SNR) [16]. For completeness,

we computed metrics on the original mixture signals, as well as
the results of speech separation using oracle (ground truth) mag-
nitude ratio masks, essentially specifying the expected lower and
upper performance bounds for our methods. Additionally, we used
the difference of the short-time objective intelligibility measure
(STOI) [17] between the processed output and the original rever-
berant mixtures converted to a percentage ∆STOI. This measures
the overall percent improvement in speech quality and intelligibil-
ity relatively to the original reverberant mixtures. Our choice of
metrics attempt to quantify algorithm performance through both
"standard" and perceptually-driven means.

Table 1 and 2 illustrates our quantitative performance evalua-
tion in terms of reverb reduction and speech quality improvement,
respectively. We can observe that the baseline approach clearly im-
proves upon the original reverberant mixture. Our proposed neural
network solution consistently outperforms the baseline approach,
and as to be expected, performs a few dB worse than the oracle
mask solution. The ∆STOI confirms that speech intelligibility is
not as degraded at higher SNRs. These results suggest that our
proposed neural network solution can recover about half of the
possible of improvement in speech intelligibility relative to the or-
acle solution, and it outperforms the baseline approach by a large
margin in this regard.

We performed informal listening tests, both on our synthesized
evaluation set and on real-world speech signals that are naturally
reverberated. We observe that our neural network solution can re-
duce more reverberation than the baseline approach, while remain-
ing rather transparent in its processing and reducing “pumping”
artifacts often heard in the baseline approach. The spectrograms
in Figure 2 provide a visual comparison between the baseline and
proposed approaches on a speech sample with synthetically ap-
plied reverberation. We can see that while the baseline approach
improves upon the reverberated speech, the proposed approach
yields an output that more closely resembles the underlying dry
speech. For audio examples and additional spectrograms, please
visit http://www.izotope.com/tech/dafx_dereverb .

3.3. Generalization to non-speech signals

Though we have explicitly trained our dereverberation network on
speech signals, we have informally noticed that the system can
generalize to some classes of non-speech signals. This is partic-
ularly fortuitous for our post-production application, where there
may be other sound effects, laughter, etc. that may be desirable to
salvage in a given performance.
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(a) Dry speech (b) Reverberated speech

(c) Dereverberation of (b) using the baseline approach (d) Dereverberation of (b) using the proposed approach

Figure 2: Speech dereverberation comparison.

4. CONCLUSIONS

In this paper, we proposed a novel application of source separation
to the problem of speech dereverberation, and trained a BRNN to
this end. Our proposed solution outperformed a baseline approach
based on spectral subtraction through both qualitative and quanti-
tative means. In addition to its improved performance, a benefit of
our deep learning approach is that we no longer need to formulate
an explicit model for reverberation, and can avoid hand-tuned es-
timation of reverb parameters altogether. In the future, we would
like to research effective low-latency solutions, and additionally
consider time-domain architectures which may be able to more
accurately observe and remedy early reflections.
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