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ABSTRACT

Statistical sinusoidal modeling represents a method for trans-
ferring a sample library of instrument sounds into a data base of
sinusoidal parameters for the use in real time additive synthesis.
Single sounds, capturing an instrument in combinations of pitch
and intensity, are therefor segmented into attack, sustain and re-
lease. Partial amplitudes, frequencies and Bark band energies are
calculated for all sounds and segments. For the sustain part, all
partial and noise parameters are transformed to probabilistic dis-
tributions. Interpolated inverse transform sampling is introduced
for generating parameter trajectories during synthesis in real time,
allowing the creation of sounds located at pitches and intensities
between the actual support points of the sample library. Evalua-
tion is performed by qualitative analysis of the system response to
sweeps of the control parameters pitch and intensity. Results for
a set of violin samples demonstrate the ability of the approach to
model dynamic timbre changes, which is crucial for the perceived
quality of expressive sound synthesis.

1. INTRODUCTION

A system capable of expressive sound synthesis reacts to dynamic
control input with the desired or appropriate changes in sound. In
analysis-synthesis systems this means that the perceived timbral
qualities of the synthesized sound emulate the behavior of the an-
alyzed instrument as close as possible. Such systems thus need to
capture the individual sound of an instrument and allow manipu-
lations based on a limited set of control parameters. In order to
achieve this, the synthesis approach presented in this paper, enti-
tled statistical sinusoidal modeling, combines a sample based ap-
proach with a novel method for sinusoidal modeling.

Sample based synthesis in its basic form is able to capture in-
dividual sounds very accurately but does not offer manipulation
techniques necessary for an expressive synthesis [1]. Sinusoidal
modeling, on the other hand, is capable of wide-ranging means
for sound manipulation. A key problem of sinusoidal modeling
approaches, however, is the mapping of control parameters to the
large amount of synthesis parameters. Statistical sinusoidal mod-
eling can be considered a way of mapping the control parameters
pitch and intensity to the parameters of a sinusoidal model. This
reduced set of control parameters is often considered the central
input for similar sound synthesis systems.

Different approaches aim at improving sample based sound
synthesis. Among them are granular synthesis and corpus based
concatenative synthesis [2]. Combined with spectral manipula-
tion techniques, the flexibility of these approaches is further in-
creased. Such combinations have proven to be effective for ex-

pressive sound synthesis. Examples include spectral concatena-
tive synthesis |3 and reconstructive phrase modeling [4]].

An extended source-filter model has been proposed by Hahn et
al. [5116]. Partial and noise parameters are modeled in dependency
of the control parameters pitch and intensity, by means of tensor-
product B-splines. Two separate filters are used, one representing
the instrument-specific features by partial index and another one
capturing the frequency dependent partial characteristics. Wessel
et al. [[7] present a system for removing the temporal axis from the
analysis data of sinusoidal models by the use of neural networks
and memory-based machine learning. These methods are used
to learn mappings of the three control parameters pitch, intensity
and brightness to partial parameters. A system combining corpus
based concatenative synthesis with audio mosaicing (8] has been
proposed by Wager et al. [9]. This approach is able to synthe-
size an expressive target melody with arbitrary sound material by
target-to-source mapping, using the features pitch, RMS energy
and the modulus of the windowed Short- Time Fourier Transform.

A key feature in an expressive re-synthesis of many instru-
ments, especially of bowed strings, are the so called spectral en-
velope modulations (SEM) [10]. The amplitude of each partial is
modulated by its frequency in relation to the underlying frequency
response of the instrument’s resonant body. A vibrato in string
instruments thus creates a periodic change in the relative partial
amplitudes. At the typical vibrato frequencies of 5-9 Hz this effect
is perceived as a timbral quality, rather than a rhythmical feature.
This phenomenon, perceptually also referred to as Sizzle [11], con-
tributes to the individual sound of instruments to a great extent.
Using spectral modeling techniques for manipulations of instru-
ment sounds, this effect is also considered essential for improving
the quality [12]. Glissandi also result in spectral envelope modu-
lations in the same way.

Another important effect for an expressive re-synthesis is the
connection between intensity and the spectral features of the in-
strument’s sound. Increases in intensity usually cause significant
changes in the spectral distribution, respectively spectral skewness
and spectral flatness [[13]], as well as in the tonal/noise ratio.

The proposed system is designed to encompass the above men-
tioned effects with simple means, enabling an efficient real time
implementation. Details on the analysis, sinusoidal modeling and
statistical modeling are presented in Section 2] Section[3]explains
the statistical sinusoidal synthesis process in detail, followed by
the evaluation of synthesis results in Section[d] The conclusion in
Section[5]summarizes the findings and lists perspectives for further
development.
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Figure 1: Exemplary probability mass function (PMF) with derived cumulative mass function (CMF) and inverted CMF.

2. ANALYSIS AND MODELING

2.1. Sample Library

The focus of the presented synthesis system rests on excitation-
continuous melody instruments, using a violin as source material
for the analysis stage. The TU-Note Violin Sample Library[14]
is used for generating the statistical model. Featuring 336 sin-
gle sounds and 344 two-note sequences, it has been specifically
designed for this purpose. For the use in this project, the sin-
gle sounds are reduced to a total of 204, consisting of 51 unique,
equally spaced pitches, each captured at four dynamic levels. In
the remainder, this two-dimensional space will be referred to as
the timbre plane. It must be noted that, depending on the instru-
ment, additional dimensions for timbre control need to be added
to this space. For the violin, limited to standard techniques, the
proposed reduction is acceptable. MIDI values from O to 127 are
used to organize the dimensions pitch and velocity. Pitches range
from the lowest violin note at MIDI 55 ~ G3 = 197.3341 Hz (443
tuning frequency) to the note at MIDI 105 ~ A7 = 3544 Hz. The
dynamic levels pp, mp, mf and ff are captured in the timbre plane.
The material has been recorded at 96 kHz with 24 bit resolution
and can be downloaded using a static repository [15].

2.2. Sinusoidal Analysis

The sinusoids+noise model [16]] is used for extracting the tonal
and noise parameters for each single sound. Analysis and model-
ing is carried out offline, prior to the synthesis stage. Monophonic
pitch tracking is performed using the YIN [17] and SWIPE [18]
algorithms. Tests with more recent, real-time capable approaches
[19] did not improve the performance. Based on the extracted fun-
damental frequency trajectories, partial trajectories are obtained
by peak picking in the short-time Fourier transform (STFT), using
a hop-size of 256 samples (2.76 ms) and a window size of 4096
samples, zero-padded to 8192 samples.

Quadratic interpolation (QIFFT), as presented by Smith et al.
[20], is applied for estimating amplitude and frequency of up to
80 partials in each frame. The partial phases ¢; are obtained by
finding the argument of the minimum when subtracting each par-
tial with the individual amplitude a; and frequency f; from the
complete frame z at different phases (px:

L
p; = arg min Z (z(n) — aisin(2r fit(n) + ™)) | ,

n=1

(€3]

After all partial parameters are extracted, the residual is cre-
ated by subtracting the tonal part with original phases from the
complete sound in the time domain. Modeling of the residual com-
ponent is performed with a filter bank, based on the Bark scale, as
proposed by Levine et al. [21]]. The instantaneous energy trajec-
tories of all bands are calculated using a sliding RMS with the
hop-size of the sinusoidal analysis (2.76 ms) and a window length
of 21.33 ms.

For each single sound, the analysis results in up to 80 partial
amplitude trajectories, 80 partial frequency trajectories, 80 partial
phase trajectories and 24 noise band energy trajectories. Since the
original phases are not relevant for the proposed synthesis algo-
rithm, they are not used for the further modeling steps.

2.3. Segmentation

The TU-Note Violin Sample Library includes manually annotated
segmentation labels, based on a transient/steady state discrimina-
tion. For the single sounds they define the attack, sustain and re-
lease portion of each sound. Trajectories during attack and release
segments are stored completely and additionally modeled as para-
metric linear and exponential trajectories. Details on the modeling
and synthesis of attack and release segments are not subject to this
paper. The sustain part is synthesized with the statistical sinusoidal
modeling approach, explained in detail in the following section.

2.4. Statistical Modeling

After the segmentation, the above obtained trajectories of the par-
tials and noise bands during the sustain portion of the sound are
transformed into statistical distributions. Probability mass func-
tions (PMF') with 50 equally spaced bins are created and trans-
formed to cumulative mass functions (CMF):

CMF(z) = i PMF (z;) @)

x;=0

Inverse transform sampling relies on the inverted CMF' for
generating random number sequences with the given distribution.
Figure [T] shows an exemplary PMF with the derived CMF and
inverted CMF. For the synthesis algorithm, CMF's and their in-
versions are calculated and stored for all partial and noise trajec-
tories during the sustain parts. CMFs for the first five partials’
amplitudes and frequencies are shown in Figure 2] respectively
Figure[3] CMFs for the first five noise band energies are shown in
Figure [4] Additionally, the mean, median and standard deviation
of all distributions are stored with the model.
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Figure 2: CMF's for the first five partial amplitudes. Figure 4: CMF's for the first five bark energy trajectories.
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Figure 3: CMF's for the first five partial frequencies.

3. SYNTHESIS

3.1. Algorithm Overview

The implementation of the algorithm is included in a C** based
framework, using the JACK API [22]]. Synthesis is performed in
the time domain, with a non-overlapping approach and a frame
size related to the buffer size of the audio interface. On the test
system, a buffer size of 128 samples was used at a sampling rate
of fo = 48kHz, which allows a responsive use of the synthe-
sizer. For generating a single sound, a maximum of 160 partial
parameters and 24 bark band energies have to be generated each
synthesis frame. The full number of 80 partials, however, is only
synthesized for pitches below 600 Hz at a sampling rate of 96 kHz,
respectively below 300 Hz at 48 kHz. Figure[3]shows the number
of synthesized partials in dependency of sampling rate and funda-
mental frequency.

Listing 1: Pseudo code for the synthesis algorithm.

for each frame:
get control inputs

for all partials:
generate random frequency value
generate random amplitude value
generate linear amplitude ramp
synthesize sinusoid
add sinusoid to output

all Bark bands:

generate random band energy
generate linear energy ramp

apply band filter to noise signal
add band signal to output

for

Figure 5: Number of partials synthesized, depending on sampling
rate and fundamental frequency.

For each frame of the synthesis output, a new set of support
points is generated, as shown in Listing [T} Interpolation trajec-
tories are generated for the connection to the preceding values of
partial amplitudes and noise band energies. Partial frequencies are
piece-wise constant.

3.2. Statistical Value Generation

The statistical sinusoidal synthesis offers two different modes for
generating parameter trajectories. For the three synthesis parame-
ter types (partial amplitude, partial frequency and noise band en-
ergy) the mode can be selected, individually.

3.2.1. Mean/Median Mode

In the mean/median mode, the individual distribution functions are
not used. Support points of the parameter trajectories are generated
using the mean or median values stored in the model. For a con-
stant control input, the resulting parameter trajectories remain con-
stant, too. Variations in parameters are thus induced only through
modulations of the input parameters.

3.2.2. Inverse Transform Sampling

Inverse transform sampling is a method for generating random
number sequences with desired distributions from uniformly dis-
tributed random processes [23]. The inverted CMF, as shown
in Figure |l1c| maps the uniform distribution 2£(0, 1) to the target
distribution. The method can be implemented using a sequential
search method [24} p. 85], without actually inverting the distribu-
tion functions in advance. For a random value 0 < r < 1 from
the uniform distribution, the corresponding value 7 from the target
distribution can be obtained as the argument of the minimum of
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the difference to the relevant cumulative mass function, as shown
in Figure[Tb}

7 = arg min [CMF (z) — r] 3)

In the implementation, this is realized using a vector search

for Equation El Binary search trees can increase the efficiency of

this approach and lookup tables or guide tables for the individual

distributions are even more efficient [24]]. For the chosen amount

of parameters, the sequential search showed to be efficient enough

to run the synthesis smoothly with 80 partials on an Inzel® Core™
i7-5500U CPU at 2.40GHz.

3.3. Timbre Space Interpolation
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Figure 6: Interpolation in the timbre plane.

For the use of expressive input streams for pitch and intensity,
arbitrary points in the timbre plane need to be synthesized. In-
terpolation between the support points generated by analyzing the
sample library is possible for the mean/median mode as well as
for the inverse transform sampling mode. Figure[6]shows a point
P located in the square ABC'D between four support points. The
weights for the parameters at each support point are calculated by
the following distance-based formulae:

wa=(1-z)(1-y) “)
wp =z(1 —y) 5)
We =1y (6)
wp = (1—z)y (7

In the average mode, the weights w; can be directly applied
to the mean or median values m; corresponding to the parameter
values at the given points A, B, C and D for obtaining the inter-
polated average m:

m=wama +wsms +wecmec +wpmp 8)

In the case of inverse transform sampling, the interpolation is
performed as presented in Figure[7} A single random value 7 is
generated from a uniformly distributed random process U (0, 1).
This value is then used to generate four random values ; using
the CMFs at the four support points. These resulting values are
finally multiplied by the weights from Equations[5H7]and summed
to obtain the interpolated random value 7*:

’F* = ’LUAf(CMFA) —|—wBF(CMFB)

| omrs | [ omFs | | cmFo | | omFp |
I I e R

Figure 7: Interpolated inverse transform sampling.

3.4. Smoothing

The inverse transform sampling method as presented above does
not consider the recent state for generating new support points.
Hence, it does not capture the frequency characteristics of the an-
alyzed trajectories. As a result, rapid changes may occur in the
synthesized trajectories, which are not included in the original sig-
nals, although the resulting distribution functions are correct. For
that reason, an adjustable low-pass filter is inserted after the ran-
dom number generators for smoothing the trajectories. It should be
noted that this filtering process narrows the distribution functions.

4. MEASUREMENTS

For evaluating the ability of the proposed synthesis algorithm to
react to expressive control streams, the responses to sweeps in the
frequency and intensity dimension are captured and analyzed by
qualitative means. Only the deterministic component is used for
this evaluation, discarding the noise.

4.1. Frequency Sweeps

0.03
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Figure 8: SEM for an octave sweep of the first partial.

For analyzing the effect of the spectral envelope modulations,
a frequency sweep of one octave is sent to the synthesis system
at four different intensities. The sweep ranges from the lowest
tone of MIDI=55 (G3, 197.33 Hz) to MIDI=67 (G4, 394.67 Hz).
The responses of all active partials to the frequency sweeps are
recorded as separate signals for an analysis.
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Figure 9: Representations of the frequency response through spectral envelope modulations of 30 partials by a one octave sweep.

Figure@ shows the amplitude of the first partial as a function of
the fundamental frequency. The resulting trajectory shows no dis-
continuities, validating the interpolation process. It further shows
a prominent peak at appropriately 257 Hz, caused by the spectral
envelope modulations. Joining the amplitude over frequency tra-
jectories of the first 30 partials, the frequency response of the in-
strument can be visualized through SEM. Results are shown for
MIDI intensities 20 (pp), 50 (mp), 80 (mf) and 120 (ff) in Fig-
ure [0] With increasing partial index, the overlap with the neigh-
boring partial trajectories increases. The approximated frequency
responses are thus blurred for higher frequencies.
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Figure 10: Input admittance at the bass bar side of an Andrea
Guarneri violin [25].

All four representations of the frequency responses in Figure[J]
show the same prominent peaks. These peaks correspond to the

formants typical for violins. For a comparison, the input admit-
tance of a Guarneri violin is shown in Figure [T0]

Characteristic resonances of violin bodies have been labeled
inconsistently by different researchers. However, referring to Curtin
et al. [T1]], the prominent resonances for Figure[I0]are listed in Ta-
ble[Il PlotsQal—[Od| all show the f-hole resonance at 284 Hz and
the main wood resonance, respectively the lowest corpus mode at
415Hz. At higher intensities, the plots show peaks at 709 Hz,
872Hz and 1170 Hz, related to the upper wood resonances and
the lateral air motion. The so called violin formant is represented
by a region of increased energy between 2000 Hz and 3000 Hz.

Table 1: Main resonances of a violin body [25,[11]].

Label Frequency Description
AO: 275 Hz f-hole resonance
C2 (T1): 460 Hz main wood
C3: 530 Hz second wood
C4. 700 Hz third wood
F: 1000 Hz lateral air motion

2000 - 3000 Hz  violin formant, bridge hill

4.2. Intensity Modulations

The response of the synthesis system to changes in intensity is cap-
tured at four different pitches. Intensity sweeps from 0 to 127 are
used at MIDI pitches 55 (G3, 197.33 Hz), 67 (G4, 394.67 Hz), 79
(G5, 789.33 Hz) and 93 (A6, 1772.00 Hz). The plots in Figurel'l;fl
show the spectrum of the harmonic signal in dependency of the
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Figure 11: Amplitudes of the first 50 partials in dependency of intensity, captured for four different pitches.

intensity, sampled at the partial frequencies. For higher pitches,
the number of partials is reduced, resulting in a lower frequency
resolution. An increase in high frequency content is indicated for
higher intensities at all pitches.
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Figure 12: Harmonic spectral centroid as function of intensity for
four different MIDI pitches (55, 67, 97, 93).

The harmonic spectral centroid (HSC) is calculated for 50
equally spaced points within all sweeps for analyzing the influence
of the intensity on the harmonic component of the signal. Based
on the spectral centroid, the HSC regards only the amplitudes a;
of the partials, resulting in a pitch independent measure for the
spectral distribution of the partials:

10)

Figure[T2]shows the HSC as a function of the intensity for four
different pitches. All trajectories show a quasi monotonic increase
in the HSC with increasing intensity. Changes in intensity thus
result in changes in timbre, respectively in brightness.

5. CONCLUSION

The proposed statistical sinusoidal modeling system is capable of
reacting to expressive gestures, using the input parameters pitch
and intensity. Evaluations of frequency and intensity sweeps show
the desired responses in timbral qualities, validating the interpo-
lated inverse transform sampling. The next important step for im-
proving the algorithm is the implementation of a Markovian in-
verse transform sampling, considering past values for the random
sequence generation and thus preserving the frequency character-
istics of the synthesis parameters.

Using the actual inverse cumulative mass functions during run-
time could further improve the performance of the algorithm. At
the current state the inverse transform sampling requires a search
within an unsorted vector, whereas actual inverted functions can
be used by simple indexing. The flexibility and compression rate
of the model could be increased by using parametric distributions
instead of stored distribution functions.

Since the presented approach aims at the synthesis of sustained
signals, an integration of parametric transition models [26] and
trajectory models for attack and release segments is necessary for
completing the synthesis system. Future experiments aim at a per-
ceptual evaluation of synthesized sounds and expressive phrases
from the full system. User studies are planned for assessing the
applicability of the synthesis approach in a real-time scenario.
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