
Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

DEVELOPMENT OF A QUALITY ASSURANCE AUTOMATIC LISTENING MACHINE
(QUAALM)

Daniel J. Gillespie ∗

Newfangled Audio
New York, NY

DGillespie@newfangledaudio.com

Woody Herman

Eventide Inc.
Little Ferry, NJ

WHerman@eventide.com

Russell Wedelich

Eventide Inc.
Little Ferry, NJ

RWedelich@eventide.com

ABSTRACT

This paper describes the development and application of a ma-
chine listening system for the automated testing of implementa-
tion equivalence in music signal processing effects which contain
a high level of randomized time variation. We describe a mathe-
matical model of generalized randomization in audio effects and
explore different representations of the effect’s data. We then pro-
pose a set of classifiers to reliably determine if two implementa-
tions of the same randomized audio effect are functionally equiva-
lent. After testing these classifiers against each other and against a
set of human listeners we find the best implementation and deter-
mine that it agrees with the judgment of human listeners with an
F1-Score of 0.8696.

1. INTRODUCTION

When Eventide began development of their new H9000 effects
processor a primary task was the porting of a large signal pro-
cessing code base from the Motorola 56000 assembly language to
C++ targeted to several different embedded processors. While in-
dustry standard cancellation testing was possible for deterministic
effects, most of the effects involved some amount of random time
variation causing test results to vary significantly from the judg-
ment of human listeners. This created a problem when ascertain-
ing that the thousands of presets used in the H8000 were working
correctly on the H9000. To solve this problem we developed a ma-
chine listening system to replace the first stage of human listening
to determine if two different implementations sound equivalent.

Comparing the similarity of two audio signals is done in many
contexts. The field of audio watermarking aims to embed a unique
code in an audio stream such that the code is imperceptible to
the human ear and is recoverable after the application of several
different auditorily transparent transformations such as time scale
modification [1][2]. Several different techniques are used to quan-
tify how perceptible the added code is to the listener. These in-
clude the Perceptual Audio Quality Measure (PAQM), the Noise
to Mask Ratio (NRM), and the Perceptual Evaluation of Audio
Quality (PEAQ) [3]. However, while these methods aim to make
a perceptual comparison between two recordings, the comparison
is primarily interested in determining if two signals sound exactly
the same. Unfortunately, these comparisons are not useful to us as
we need to determine if two sets of unique signals are generated
by the same random process, even when these sets of signals vary
significantly inside each set.

There have also been several attempts to reverse engineer the
specific settings of audio effects [4][5][6], however these systems
are often aimed at specific effects types and rely on a specific

∗ For Eventide Inc.

model. At the most general, Barchiesi and Reiss assume that the
effects are linear and time-invariant[4], which we cannot assume
here.

The fields of audio query by example and music recommen-
dation systems have a looser definition of audio similarity which
might have some applications to our problem. A comparison of
some systems which aim to define this more general similarity is
given by Pampalk et al in [7]. A particularly interesting implemen-
tation from Helén et al [8] uses a perceptual encoder followed by
a compression algorithm to determine similarity by the compres-
sion ratio of the signals separately vs combined. Another interest-
ing probabilistic approach is given by Virtanen [9]. These models
may have the capacity to model the variation we expect between
and within the sets of signals we are evaluating, however, their im-
plementations are very resource intensive and the nature of these
problems is that there is no ground truth by which to compare the
algorithms to each other. We suspect that we might be able to solve
our problem with a more compact model.

In Section 2 we give a deeper description of the problem. Sec-
tion 3 describes the theory behind our solution. Section 4 mentions
some practical considerations of our system. Section 5 describes
the validation experiments we ran, and Section 6 gives results of
these experiments and some analysis. Section 7 gives a brief con-
clusion, Section 8 some acknowledgments, and Section 9 includes
references.

2. PROBLEM DESCRIPTION

When testing whether two audio signal processing implementa-
tions are functionally equivalent it is common to send a test signal
x(t) through each of them and compare the output signals y1(t)
and y2(t) [10]. If the magnitude difference z(t) between these
two outputs is less than 2η, for some very small η, the two imple-
mentations can be considered equivalent.

This can be written as

yn(t) = fn(x(t)) (1)

z(t) = |y1(t)− y2(t)|, (2)

z(t) < 2η; ∀t ∈ T, (3)

where fn(x) represents the nth distinct implementation being
tested.

This test works well for musical effects that can be character-
ized by a deterministic system plus a small residual, as long as the
system memory is less than the measurement time scale T . This is
true because this test relies on the the implicit signal model

fn(x(t)) = f(x(t)) + ηNn(t) (4)

DAFX-489

http://www.newfangledaudio.com
mailto:DGillespie@newfangledaudio.com
http://www.eventide.com
mailto:WHerman@eventide.com
http://www.eventide.com
mailto:RWedelich@eventide.com

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

where f(x(t)) is the theoretically perfect implementation and
Nn(t) is a continuous random process on the range [−1, 1] repre-
senting the implementation-specific variation from f(x(t)). The
test in Equation (3) places no constraints on Nn(t) other than that
it is strictly bounded to the range [−1, 1], nor do we assume any.
It is likely that some realizations of Nn(t) produce more audible
effects than others, but in practice the cancellation tests works by
keeping η very small.

A very simple example of a deterministic effect that uses this
signal model is a gain effect with a constant gain of g. This system
can be represented as

f(x(t)) = gx(t) (5)

When implemented digitally it becomes

fn(x(t)) = g[x(t) + qn(t)] + tn(t) (6)

Where qn(t) represents the quantization noise and tn(t) rep-
resents the truncation error of the multiply, each in the nth imple-
mentation. Both of these types of error can be modeled by additive
noise, and with a slight re-arrangment we can show that it fits the
signal model of Equation (4)

fn(x(t)) = gx(t) + gqn(t) + tn(t) (7)

fn(x(t)) = f(x(t)) + ηNn(t) (8)

|f1(x(t))− f2(x(t))| = |ηN1(t)− ηN2(t)| (9)

and as long as |gqn(t) + tn(t)| < η is strictly true for two
different implementations, we can call them equivalent using the
cancellation test in Equation (3).

A slightly more complicated deterministic process which still
passes the test in Equation (3) is the simple tremolo effect. To
create a tremolo effect we define g as a function of time, now the
system can be described by

g(t) = sin(w0t) (10)

f(x(t)) = sin(w0t)x(t) (11)

By adding an additional sn(t) term to represent the error in gener-
ating the sine wave, we can write an implementation-specific ver-
sion.

fn(x(t)) = (sin(w0t) + sn(t))(x(t) + qn(t)) + tn(t) (12)

After grouping the additive components we can still factor the
implementation specific components into a simple additive term.

fn(x(t)) = sin(w0t)x(t) + ηNn(t), (13)

ηNn(t) = sin(w0t)qn(t) + sn(t)(x(t) + qn(t)) + tn(t). (14)

As long as the implementation errors qn(t), sn(t), and tn(t) are
kept small enough the two implementations can be considered equiv-
alent, as is demonstrated by

|f1(x(t))− f2(x(t))| = η|N1(t)−N2(t)|. (15)

When considering the addition of intentional randomization to
these types of effects it might be tempting to consider them to be
additive processes using the existing signal model. For instance,
if we consider the implementation error of the sine wave sn(t) in
equation (12) to instead represent an intentional random process
integral to the sound of the effect, we might consider trying to
reduce it’s contribution to the measurement error by averaging over

several recordings of the effect. If all sources of randomization can
be considered purely additive, we could take several measurements
of each implementation and compare the mean and variance of
each to make a determination which may prove sufficient to call
them functionally equivalent.

Unfortunately, many effects implement processing whose ran-
domization cannot be treated as simple additive noise. For these
effects even a relaxation of the cancellation test in Equation (3)
is not appropriate because the signal model used does not have
the capacity to discriminate between equivalent implementations
and ones that differ. We can show an example of this by adding a
random initial phase θn to our tremolo example and deriving the
equation for the cancellation test. If we treat θn as a uniformly
distributed random variable between −π and π the system can be
described by

fn(x(t)) = (sin(w0t+θn)+sn(t))(x(t)+qn(t))+tn(t) (16)

After grouping the additive components we are not able to fac-
tor the theoretically perfect f(x(t)) out of the model.

fn(x(t)) = sin(w0t+ θn)x(t) + ηNn(t), (17)

and therefore the difference will depend on θn

|f1(x(t))− f2(x(t))| =

|(sin(wt+θ1)x(t)−sin(wt+θ2)x(t))+(ηN1(t)−ηN2(t))|
(18)

Even if we make the additive sources of error very small, if
we cannot control the distribution of θn there will still be a large
source of error determined by this initial condition. This might
seem to be a contrived comparison, but consider that the two im-
plementations might be running on different hardware, or even im-
plemented in an analog circuit. In these situations we may not be
able to synchronize θn. More complicated effects often have sev-
eral processes with randomized initial conditions which we will
store in the vector Θn and may even be the result of one or more
random processes Ψn(t). We can write this as the more general
formulation

yn(t) = fn(x(t),Ψn(t),Θn) (19)

In these instances, Ψn(t) and Θn may not always be able to
be controlled between various implementations, and when they are
not the same we can expect the test in Equation (3) to fail.

However, in practice we found that both in-house testers and
end users are able to reliably detect similarity or difference in these
categories of randomized time-variant effects, even when sources
of randomization are not controlled. Therefore we hoped to de-
sign a machine listening algorithm to make these implementation
equivalence determinations in much the same way that humans
do. The goal was to create an algorithm that would reliably de-
tect functional equivalence between implementations of both the
easily tested deterministic, as well as the highly randomized audio
effects without any prior knowledge about the effect under test.

3. THEORY

To extend the simple model in Equation (3) to systems with unde-
fined random variations we will form a probabilistic interpretation

DAFX-490

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

and use several samples of each implementation fn(·) to learn a
model of its behavior. Once we learn models for each fn(·) we
can compare these models to make a decision about the similarity
of the implementations.

3.1. Representing the Data

As is done in the classical problem description above, we chose to
represent each fn(·) by testing the appropriate response yn(t) to
the common test signal x(t). Therefore the learning problem hap-
pens on vectors representing the yn(t) signals rather than the fn(·)
processes directly. Because of this, the result of the test depends
both on the test method as well as the forcing signal x(t). Specif-
ically, in the case of linear time-invariant systems, yn(t) must be
long enough to capture the entire expected impulse response of
fn(·), and it must have sufficient bandwidth to measure the ex-
pected bandwidth of fn(·). When the system is expected to be
nonlinear it must have sufficient changes in amplitude to capture
these effects. Finally, when the system is expected to be time-
variant, yn(t) must be long enough to capture this time-variance,
or there must be enough samples of yn(t) to sufficiently span the
expected range of variance.

So given the test signal x(t), we will now learn a model Yn

for each implementation fn(·) representing its response yn(t).
To learn the Yn we must represent the signal yn(t) as a fixed

length feature vector yn, where each discrete sample in yn will
be a feature in our probabilistic model. For these representations
we consider several choices. We can choose to simply use the dis-
cretized samples yn[i] directly. This has the benefit of being sim-
ilar to the tried and true method in Equation (3) and does not lose
any data. Additionally, when using this representation, any purely
additive or multiplicative differences between implementations of
fn(·) will result in purely additive or multiplicative differences in
yn. Therefore, even if we assume the features of Yn are strictly in-
dependent, Yn will still be able to capture these differences. How-
ever, if fn(·) has memory, errors in the part of the system with
memory will be spread across several different features in yn and
we will have to include some dependency structure in Yn to ac-
curately model these differences, which can make the model more
complicated.

We can also choose to take the magnitude FFT of yn[i], which
has the added benefit of keeping most of the data when the FFT
size is large. However, if we do so, convolutions in the fn(·) pro-
cess will become simple multiplications. Therefore a model that
assumes independence will be more robust to small convolutive
variations, like a small change in a delay time parameter, at the
expense of being less robust to small multiplicative variations, like
a small change in a gain coefficient.

A compromise solution might be to take the magnitude STFT
of yn and vectorize it. This would combine the benefits of both
the sample-wise and FFT representations, while maintaining the
locality of differences in both time and frequency. This might put
a limit on the amount of dependency the model needs to assume, or
the amount of error we’d expect to see by assuming independence.

Finally, considering we’re looking to replace human listeners
we might take a cue from speech recognition research [11], and
choose to represent the audio as a vectorized set of MFCC coeffi-
cients. While this representation does throw away data, depending
on the length of the test signal x(t), losing this data may help us
with regard to the "curse of dimensionality" [12], which describes
how the modeling capacity of a given model can suffer as the di-

mensionality of the training data increases. In Experiment 1 we
will try all four of these data representations to determine which
gives the best classification accuracy across a number of effects.

3.2. Forming a Probabilistic Representation

When dealing with sources of variation it is often useful to build
the model in terms of a probabilistic formulation. If we believe that
M successive applications of fn(·) to x(t) will result in M distinct
results ymn(t) and ymn then we might choose to model the ymn

vectors as a random process from which we can draw samples. A
commonly used generative model for high dimensional continuous
data is the multivariate normal distribution with the assumption of
independence between the dimensions [13]. This model has the
benefit of fitting many naturally occurring processes, while also
having a tractable calculation of the log likelihood that a particular
sample has come from the underlying model. This is true even
when used with very high dimensional feature vectors, like we
expect to have here.

To do this, we define

Yn ∼ N (µn, σ
2

n) . (20)

µn =
1

M

M∑
m=1

ynm (21)

σn =
1

M − 1

M∑
m=1

(ynm − µn)(ynm − µn)
T
. (22)

where N is the multivariate normal distribution, µn is the
mean of the M samples of yn, and σn is the variance vector. In
this instance the covariance matrix reduces to a vector because in-
dependent features imply that all non-diagonal elements of the co-
variance matrix are zero.

3.3. Making a Decision

Once we have a model Yn representing the effect fn(·) for each
implementation n, we must compare them to measure their sim-
ilarity. A common method of measuring the similarity between
two probability distributions is the Kullback-Leibler divergence
DKL(P‖Q) [14]. The Kullback-Leibler divergence from Q to P
measures the information gained when one modifies the prior dis-
tribution Q to the posterior distribution P .

When P and Q are distributions of a continuous random vari-
able the Kullback-Leibler divergence is defined by the probability
densities of P and Q, respectively p(x) and q(x), as

DKL(P‖Q) =

∫
∞

−∞

p(x) log
p(x)

q(x)
dx, (23)

To determine the similarity of two implementation models Yn

we can choose the target implementation to represent the true dis-
tribution P and choose the implementation under test to represent
the prior distribution Q. The smaller the information gained by
modifying Q to match P , the more similar the distributions Q and
P are considered. Therefore, by finding the Kullback-Leibler di-
vergence DKL(Ytarget‖Ytest) we can gain a measure of similarity
between the known good implementation ftarget(·) and the one
being tested ftest(·).

When P and Q are both multivariate normal distributions NP

and NQ with independent components the KL divergence can be
simplified to:

DAFX-491

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

DKL(NP ‖NQ) =
1

2

∑
D

ln |σQ| −
∑
D

ln |σP | −D

+
∑
D

σP

σQ

+ (µQ − µP)
′ 1

σQ

(µQ − µP) (24)

This can be thresholded to make a hard decision, or be simply
reported as an error measure.

Another option is to treat this decision as a classification prob-
lem by determining if it is more likely that a given sample yn came
from a model representing one specific implementation, or a joint
model representing both representations. For a multivariate nor-
mal distribution with independent dimensions, the log likelihood
can by calculated by

ln(L) = −
1

2

D∑
d=1

(xd − µd)
2

σ2

d

−
D

2
ln 2π −

1

2

D∑
d=1

lnσ2

d (25)

We then pull out one sample yn,m and form two sets from
the remaining samples. The set Stest represents the remaining
samples from the implementation being tested, while the set Sall

is formed from the union of Stest and Starget, which is the set of
all samples from the implementations being tested against.

Stest = yn,l; ∀l 6= m (26)

Sall = yk,l; ∀k 6= n ∪ l 6= m (27)

Now we build models Ytest from set Stest and Yall from set
Sall and calculate the log likelihoods, ln(Ltest) and ln(Lall). If
ln(Ltest) > ln(Lall), then the sample being tested fits the samples
that came from the test implementation better than it fits a collec-
tion of the samples from all implementations. This is an indication
that the implementation being tested differs from the target. How-
ever, if ln(Lall) > ln(Ltest), then the two implementations are
similar enough that the held-out sample cannot be grouped specif-
ically with the test implementation. This is an indication that the
two implementations are functionally equivalent.

To reduce the effect of outliers in this decision making, we
use a method similar to leave-one-out cross validation, and repeat
this process for each m in M , then use a voting method [15] to
determine if the implementations should be considered equivalent.

4. PRACTICAL CONSIDERATIONS

In practice the Quality Assurance Automatic Listening Machine
must run relatively quickly on a large variety of presets with as lit-
tle human intervention as possible. For the purposes of the follow-
ing experiments, the test signal x(t) was chosen to be 3 seconds of
full bandwidth noise, followed by 3 seconds of silence, followed
by a 3 second long logarithmic chirp, followed by a final 3 seconds
of silence. This specific signal was chosen to reflect the particulars
of the expected effects. While we believe that there are some ef-
fects for which this signal will be insufficiently long, a necessary
trade off must be made to keep the dimensionality reasonable for
the classifiers sake and to keep the recordings short for the sake
of the test duration and for human validation. We didn’t experi-
ment with different test signals, though we believe that this might
be a good route for further improvement. Additionally, we chose

to build our models based on a sample of 10 recordings from each
preset being tested.

In operation, we will also have a preference for false failures
over false passes, because a false negative that allows a human lis-
tener to double check is preferable to a false positive that allows a
potential implementation problem to go into production. For this
reason, we will score the classification experiments using both the
standard F Score as well as the Precision and Recall scores. Pref-
erence is given to the Precision score which penalize the algorithm
only for false positives.

From [16] Precision is defined as

Precision =
TP

TP + FP
, (28)

and Recall is defined as

Recall =
TN

TN+ FP
, (29)

where TP is the number of true positives, or instances where
both the human listeners and the QuAALM decided that the im-
plementations were the same, TN is the number of true negatives,
or instances where both the human listeners and the QuAALM de-
cided that the implementations were different, FP is the number of
false positives, or instances where the QuAALM declared that the
two implementations were the same, but the human listeners did
not, and FN is the number of false negatives, or instances where
the QuAALM declared that the two implementations were differ-
ent, but the human listeners decided that they were the same.

Then, the F-measure is defined as the average of Precision and
Recall:

F1 = 2 ·
Precision · Recall

Precision + Recall
(30)

F1 =
2TP

2TP + FP + FN
(31)

5. EXPERIMENTAL DESIGN

We ran two different experiments. The first is meant to find the
best set of features and the best decision algorithm. The second
is meant to validate the QuAALM machine by comparing it with
human listeners.

5.1. Experiment 1: Determination of Best Signal Representa-

tion and Decision Algorithm

The first experiment intends to determine the best representation of
the data between the options of the naive basis (samples), full mag-
nitude FFT, magnitude STFT, and MFCC features. For each data
representation the experiment finds the result using the the vot-
ing classifier method, as well as the thresholded Kullback-Leibler
divergence. This test is run using 10 recordings from each of 19 in-
dividual effects which were hand picked to represent the diversity
of expected effects. The ground truth was determined by the con-
sensus of two expert listeners who made their determinations inde-
pendently. To determine the ground truth, each listener was given
10 recordings of the test signal from the target implementation,
and 10 recordings from the implementation under test. They were
asked to make a determination regarding whether these recordings
were made using implementations that were functionally equiva-
lent, or whether there was a detectable difference. Each listener

DAFX-492

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

Table 1: Evaluation of feature representations and decision methods: Are the implementations equivalent?

Bold indicates agreement.

Preset
Number

Human
Listeners

Samples
Vote %

Samples
log KL

FFT
Vote %

FFT
log KL

STFT
Vote %

STFT
log KL

MFCC
Vote %

MFCC
log KL

3524 no 10% 16.65 10% 25.95 10% 24.32 10% 16.25

3526 no 10% 16.94 10% 26.66 10% 24.62 10% 16.35

615 no 30% 13.44 10% 26.90 10% 22.27 0% 16.78

7613 no 100% 13.71 0% 18.78 10% 18.93 0% 10.62

5012 no 100% 12.10 100% 13.65 100% 12.93 0% 9.47
4311 no 50% 12.97 0% 15.39 0% 15.10 0% 11.65

1411 no 0% 15.60 0% 28.39 0% 22.82 0% 17.61

5430 no 100% 12.63 0% 13.63 0% 23.62 0% 14.67

2211 no 0% 15.24 0% 27.47 0% 22.02 0% 17.90

221 no 100% 12.13 100% 14.31 90% 13.45 100% 9.97
225 no 100% 11.93 0% 17.89 100% 13.04 100% 9.58
4720 yes 100% 14.75 0% 13.78 0% 13.95 0% 12.72
5809 yes 80% 14.79 0% 13.41 10% 16.51 90% 9.64

224 yes 50% 11.93 40% 17.23 60% 13.99 100% 11.80
1413 yes 50% 11.24 60% 12.56 100% 11.34 80% 9.59

815 yes 100% 11.87 0% 12.52 100% 11.76 100% 8.21

1116 yes 0% 16.97 0% 19.61 0% 18.39 100% 11.63
4510 yes 100% 14.14 0% 12.64 100% 11.80 100% 8.97

12 yes 100% −4.79 100% 7.82 100% 2.26 100% 7.41

Correct % 63.2% 73.7% 57.9% 78.9% 68.4% 73.7% 84.2% 68.4%

has been trained as a musician and recording engineer and should
be considered an expert in the field of listening to musical effects.
Neither listener was aware of the results from the other listener,
or of the results of the QuAALM listening machine at the time of
their determination.

The QuAALM listening machine was then run on the same set
of recordings from each of the 19 effects and reported a Kullback-
Leibler divergence information gain, and Voting Classifier percent-
age for each feature type. The results of this test are reported in
Section six.

5.2. Experiment 2: Validation and Comparison against Hu-

man Listeners

Based on the results of Experiment 1, six listeners meeting the
same qualifications as Experiment 1 were asked to make inde-
pendent determinations of an additional 18 randomly chosen ef-
fects. These determinations were analyzed for consistency across
the human listeners, and compared to the QuAALM machine re-
sults running using the Voting Classifier test and MFCC features.
This analysis and results are included in Section six.

6. RESULTS

6.1. Experiment 1: Determination of Best Signal Representa-

tion and Decision Algorithm

The results of Experiment 1 are shown in Table 1. For each preset
tested, the Vote % and log KL divergence are reported for each of
the four feature types. The natural logarithm of the KL divergence
is reported because the range of the KL divergence for such high
dimensional data makes these values hard to display. After seeing
the results, a threshold for the log KL divergence was chosen to
optimize the results for each feature type. In a final implementa-
tion, the threshold would be considered a user parameter, and for

this test an oracle threshold was chosen to evaluate this test on it’s
optimal possible performance. A reported log KL divergence be-
low this threshold is scored as an equivalent implementation and
a value above this threshold is scored as not equivalent. These
thresholds are reported in Table 2.

Table 2: Log KL divergence thresholds

Samples FFT STFT MFCC
12 14 13 10

Similarly, the Vote % represents the average of the votes for
which the implementations were equivalent in the 10 runs of the
voting classifier. A Vote % greater than or equal to 50% is scored
as an equivalent implementation, below 50% is not. In Table 1,
scores which agree with the judgment of the human listeners are
in boldface while those that disagree are not. Finally, a percentage
of presets for which QuAALM agrees with the human listeners is
calculated for each test and reported at the bottom of Table 1.

From these results we can see that both the KL divergence
and voting classifier methods have some success depending on the
features used. However, the clear standout is the voting classifier
method when used with MFCC features. Not only does it show the
highest percentage of correct classifications, but for the instances
where it passed, the classification margins are wider. This implies
that there might be a higher robustness to noise using this test. Be-
cause of these results, we chose the voting classifier method oper-
ating on MFCC features for our deployment and run the validation
tests in Experiment 2 using this method.

DAFX-493

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

Table 3: Validation and comparison against human listeners: Are the implementations equivalent?

PresetNumber Listener1 Listener2 Listener3 Listener4 Listener5 Listener6 Consensus QuAALM Verdict
234 yes yes yes yes yes yes yes yes pass

322 yes yes yes yes yes yes yes yes pass

536 yes yes yes yes yes yes yes no fail

1333 yes yes yes no yes yes yes yes pass

1910 yes yes yes yes yes yes yes yes pass

2317 no no no no no no no no pass

3211 yes yes yes yes yes yes yes yes pass

4034 yes yes yes yes yes no yes yes pass

4138 yes yes yes yes yes yes yes yes pass

4727 no yes no yes no no no no pass

4814 no yes no yes yes yes yes no fail

5729 yes yes yes no yes yes yes yes pass

5911 yes yes yes yes no yes yes yes pass

6663 yes yes yes yes yes yes yes yes pass

6910 no no no no no no no no pass

7211 yes yes yes yes yes yes yes no fail

7419 yes no no no no yes no no pass

8214 no no no no no no no no pass

Table 4: Validation scores

Precision Recall F1

1.0 0.625 0.8696

6.2. Experiment 2: Validation and Comparison against Hu-

man Listeners

For Experiment 2, we randomly chose 18 presets from the H8000,
making sure that no two were from the same bank, and tested them
on both the H8000 and H9000 hardware. As in Experiment 1, we
used a digital audio connection and tested at a 48 kHz sampling
rate, the test signal consisted of a 3 second long Gaussian White
Noise burst, 3 seconds of silence, a 3 second exponential sine
chirp, and a final 3 seconds of silence. Ten independent record-
ings were made of both the H8000 and the H9000 for each preset.

The 20 recordings were each listened to by the six listeners,
independently and without sharing their results, and a determina-
tion was made as to whether the two implementations sounded
equivalent. For 11 of the 18 presets, all listeners agreed on their
conclusions; 8 times that the implementations were the same, and
3 times that they were different. On a further 4, a single listener
was in the minority, while the final 3 presets were a vote of 4 to 2.
No presets came to a split decision among the 6 listeners. We be-
lieve that this shows the listeners have a high degree of consistency
when determining if implementation differences were perceptually
equivalent. These preset numbers and results are tabulated in Table
3.

The final ground truth consensus was reached by a vote of the
human listeners and is also tabulated in Table 3.

For each preset, the same 20 recordings were fed into the
QuAALM machine running the voting classifier method on MFCC
features, and its judgment was recorded in Table 3, along with a
comparison of its judgment and the ground truth consensus.

We can see that the QuAALM machine disagreed with the hu-
man listeners for only 3 of the 18 presets, and in each of these
instances it reported a false negative rather than a false positive.

This leads to a Precision score of 1, a Recall score of 0.625, and
an F1 score of 0.8696. These values are shown in Table 4.

As mentioned earlier, as a practical consideration, the perfect
Precision score and relatively high F1 score satisfied our goals and
allowed us to put QuAALM into service testing real implementa-
tions.

7. CONCLUSIONS

In this paper, we developed an automated listening machine which
meets the qualifications to serve as the first line of defense for qual-
ity assurance and automated testing of our effects hardware. In
doing so we also developed a more robust framework for analyz-
ing the similarity of effects utilizing some amount of random time
variation. This framework may have applications to other listening
intensive work like the automatic labeling of effect type.

The specific implementation described here was sufficient to
serve our purposes, however, many improvements could be con-
sidered. Some potential improvements might come from exploring
different test signals, or relaxing the strict independence criteria in
the probability model, as we expect that there is likely some depen-
dence between these samples. Additionally, given the limited test
data reported here, we expect that the QuAALM machine might
be failing for some specific types of effects. A larger data set will
allow further investigation into these effect type and may lead us
to new ways to improve the system.

Additionally, the comparisons made here were between two
implementations of the same digital effects. However, the under-
lying technique should be useful to in determining the quality of
analog models for certain types of randomized effects like chorus,
flanger, phaser, or rotary speaker emulations. It would be interest-
ing to see if this were the case.

8. ACKNOWLEDGMENTS

Thank you to Jeff Schumacher, Pete Bischoff, Patrick Flores, and
Nick Solem for performing listening tests.

DAFX-494

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

9. REFERENCES

[1] Shijun Xiang, Jiwu Huang, and Rui Yang, “Time-scale in-
variant audio watermarking based on the statistical features
in time domain,” in International Workshop on Information

Hiding. Springer, 2006, pp. 93–108.

[2] Michael Arnold, “Audio watermarking: Features, applica-
tions and algorithms,” in Multimedia and Expo, 2000. ICME

2000. 2000 IEEE International Conference on. IEEE, 2000,
vol. 2, pp. 1013–1016.

[3] Christian Neubauer and JÃ 1

4
rgen Herre, “Digital watermark-

ing and its influence on audio quality,” in Audio Engineering

Society Convention 105, Sep 1998.

[4] Daniele Barchiesi and Joshua Reiss, “Reverse engineering
of a mix,” J. Audio Eng. Soc, vol. 58, no. 7/8, pp. 563–576,
2010.

[5] Stanislaw Gorlow and Joshua D Reiss, “Model-based inver-
sion of dynamic range compression,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 21, no. 7, pp.
1434–1444, 2013.

[6] Luwei Yang, Khalid Z Rajab, and Elaine Chew, “The fil-
ter diagonalisation method for music signal analysis: frame-
wise vibrato detection and estimation,” Journal of Mathe-

matics and Music, pp. 1–19, 2017.

[7] Elias Pampalk, Simon Dixon, and Gerhard Widmer, “On
the evaluation of perceptual similarity measures for music,”
in of: Proceedings of the Sixth International Conference on

Digital Audio Effects (DAFx-03), 2003, pp. 7–12.

[8] Marko Helén and Tuomas Virtanen, “A similarity measure
for audio query by example based on perceptual coding and
compression,” in Proc. 10th Int. Conf. Digital Audio Effects

(DAFX), 2007.

[9] Tuomas Virtanen and Marko Helén, “Probabilistic model
based similarity measures for audio query-by-example,” in
Applications of Signal Processing to Audio and Acoustics,

2007 IEEE Workshop on. IEEE, 2007, pp. 82–85.

[10] Mike Elliott, “How to Null Test Your Gear: Part 1,” Avail-
able at https://music.tutsplus.com/tutorials/how-to-null-test-
your-gear-part-1–cms-22425, accessed April 09, 2017.

[11] Md Sahidullah and Goutam Saha, “Design, analysis and ex-
perimental evaluation of block based transformation in mfcc
computation for speaker recognition,” Speech Communica-

tion, vol. 54, no. 4, pp. 543–565, 2012.

[12] Gordon Hughes, “On the mean accuracy of statistical pattern
recognizers,” IEEE Transactions on Information Theory, vol.
14, no. 1, pp. 55–63, 1968.

[13] Yuichiro Anzai, Pattern recognition and machine learning,
chapter Linear Models for Classification, pp. 200–203, Else-
vier, 2012.

[14] Yuichiro Anzai, Pattern recognition and machine learning,
chapter Mixture Models and EM, pp. 450–451, Elsevier,
2012.

[15] Giovanni Seni and John F Elder, “Ensemble methods in
data mining: improving accuracy through combining predic-
tions,” Synthesis Lectures on Data Mining and Knowledge

Discovery, vol. 2, no. 1, pp. 1–126, 2010.

[16] D. M. W. Powers, “Evaluation: From precision, recall and
f-measure to roc., informedness, markedness & correlation,”
Journal of Machine Learning Technologies, vol. 2, no. 1, pp.
37–63, 2011.

DAFX-495

https://music.tutsplus.com/tutorials/how-to-null-test-your-gear-part-1--cms-22425
https://music.tutsplus.com/tutorials/how-to-null-test-your-gear-part-1--cms-22425

	1 Introduction
	2 Problem Description
	3 Theory
	3.1 Representing the Data
	3.2 Forming a Probabilistic Representation
	3.3 Making a Decision

	4 Practical Considerations
	5 Experimental Design
	5.1 Experiment 1: Determination of Best Signal Representation and Decision Algorithm
	5.2 Experiment 2: Validation and Comparison against Human Listeners

	6 Results
	6.1 Experiment 1: Determination of Best Signal Representation and Decision Algorithm
	6.2 Experiment 2: Validation and Comparison against Human Listeners

	7 Conclusions
	8 Acknowledgments
	9 References

