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ABSTRACT

Loopers become more and more popular due to their growing fea-

tures and capabilities, not only in live performances but also as a

rehearsal tool. These effect units record a phrase and play it back

in a loop. The start and stop positions of the recording are typically

the player’s start and stop taps on a foot switch. However, if these

cues are not entered precisely in time, an annoying, audible gap

may occur between the repetitions of the phrase. We propose an al-

gorithm that analyzes the recorded phrase and aligns start and stop

positions in order to remove audible gaps. Efficiency, accuracy

and robustness are achieved by including the phase information

of the onset detection function’s STFT within the beat estimation

process. Moreover, the proposed algorithm satisfies the response

time required for the live application of beat alignment. We show

that robustness is achieved for phrases of sparse rhythmic content

for which there is still sufficient information to derive underlying

beats.

1. INTRODUCTION

Music can never have enough of saying over again what has
already been said, not once or twice, but dozens of times; hardly
does a section, which consists largely of repetition, come to an
end, before the whole story is happily told all over again.

— Victor Zuckerkandl [1]

Repetition is an essential characteristic of music on different

time scales. The compositional technique canon is solely based

on a repeating structure. It elaborates by combining several lay-

ers of musical phrases. The technique of looping proceeds the

same principles and establishes new perspectives and approaches

to create and combine musical ideas. Since the invention of digital

recording, the looping approach has been technically available.1

However, especially for beginners it is often difficult to handle the

timing precisely enough when controlling the looper.

Fig. 1a visualizes a looped phrase being repeated seamlessly

as start and stop cues are in-time. The musical beats are gener-

ally unknown by the system and are depicted for visualization of

the problem only. When hitting the stop button too early also the

repetition starts too early, leading to a gap of length ∆T between

the actual cue and the intended cue (Fig. 1b). Alternatively, a gap

also occurs when the stop cue comes too late (Fig. 1c). Both cases

also happen if the timing of the start cue is off, or a combination of

1With the analog predecessor of digital loop pedals, the Time Lag Accu-
mulator [2], it was almost impossible to set the loop length while playing.
First the use of digital memory instead of tape loops made it possible lead-
ing to a substantially different sound and use of live looping. [3]

(a) in-time

(b) early stop cue

(c) late stop cue

Figure 1: Examples of a one-bar-phrase getting looped with dif-

ferent stop-cue timings. The abscissa holds the musical beats, the

black line represents the envelope of the recorded signal, red lines

indicate the start and stop cues and the grey line represents the

repeated phrase setting in directly after the stop cue.

both. Nevertheless, when both cues have the same offset, the loop

gets repeated without any pauses or skips.

These artifacts can be audible and annoying, especially be-

cause of their continuous repetition. Some loopers solve this by

quantizing the start and stop cues to a predefined click track. Here,

the main objective was to develop a looper that estimates the un-

derlying beats from the recorded phrase. In the proposed approach,

the derivation of beats and tempo values is done in a final stage af-

ter gauging all possible candidates, in order to increase robustness

and circumvent the general drawback of bottom-up approaches.

As the recorded beat jitters with the accuracy and groove of the

player, and the distinctness of transients depends on the style of

play, this robustness is essential for a successful beat-alignment.

From the recorded musical phrase, we calculate a sparse en-

ergy distribution over time and compare it to given tatum2 grids. In

the following, the term tatum is used as a context-free measure of

tempo, as it does not require a musical reference value as the mu-

sical measure beats per minute (bpm) does. The tatum τ embodies

the time interval of the underlying grid and is given in seconds.

2Bilmes coined this term in his thesis Timing is of the Essence [4],
which describes the lowest metrical level in a musical piece as a fine un-
derlying grid to which every note and rest can be assigned to.
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onset detection 

function O(t)

tatum grids

Figure 2: Qualitative illustration of the basic approach: Different tatum grids get placed over the onset detection function O(t). The degree

of matching provides information about the presence of different tatums in the signal.

The next section describes the structure of the proposed al-

gorithm with its individual components. The subsequent sections

then give a detailed description of these components followed by

a performance evaluation of the algorithm including real time ca-

pability, perceptual evaluation, and performance examples.

2. OUTLINE OF THE BEAT-ALIGNMENT ALGORITHM

The beat-aligning looper should align the loop’s start and stop cues

so that no pauses or skips occur when the loop is repeated. The

basic idea is to find the tatum of a recorded signal and align the

start and stop cues to the corresponding beats. Tatum estimation

is done by calculating an onset-detection-function (ODF) to which

different tatum-grids are correlated to pick the one that fits best

(see Fig. 2). Due to a possible variability of the tempo within the

recorded phrase, the tatum estimation shouldn’t be done for the

entire sequence at once, but rather in blocks.

There is a variety of onset detectors. [5, 6] give a good overview

of mainly energy based onset detectors. A more sophisticated

approach based on recurrent neural networks is presented in [7].

However, as the audio signal from the guitar is expected to be

clean without any effects (e.g. delay, reverb or noise) applied to

it, we were able to choose a less complex onset detector. There-

fore, the spectral flux log filtered approach proposed by Böck et

al. [8] is used (Sec. 3). It is an advancement of the spectral flux

algorithm by Masri [9]. The main differences are the processing in

Mel frequency bands and the usage of the logarithm for the magni-

tudes to resolve loudness levels appropriately. The latter combined

with calculating the difference between two consecutive frames

(see Sec. 3.4) leads to an utilization of magnitude ratios instead of

differences. This compensates for temporal variability (dynamic)

of the audio signal as parts with high amplitudes do not get em-

phasized in comparison to parts with lower amplitudes.

Additionally, Adaptive Whitening suggested by Stowell and

Plumbley [10] is used to compensate for variability in both time

and frequency domain. It normalizes the magnitude of each STFT

bin with regards to a preceding maximum value and compensates

spectral differences as higher frequencies often have lower energy

(spectral roll-off). Without the spectral whitening, lower frequency

content tends to dominate over higher frequency content that con-

tains important onset information, as the surprisingly good results

of the simple HFC (high frequency content) ODF demonstrate [9].

As a basis of beat estimation, the tempo estimation approach

proposed by Wu et al. [11] was employed (Sec. 4). In their pro-

posal, an STFT of the ODF is calculated for a subset of frequen-

cies, extending the tatum grids to complex exponential functions.

This results in the tempogram, which holds a measure for the pres-

ence of a tatum in each ODF frame. Here, instead of picking the

tatum with the highest magnitude for each block, a dynamic pro-

gramming (DP) approach is used to find the optimum tempo path:

a utility function is maximized with a gain for high magnitudes

and a penalty for high tatum differences between two consecu-

tive frames. This prevents paths with unlikely large variation in

tempo. Different from existing DP approaches for beat estima-

tion like [11, 12], we don’t tie up beats to discrete onsets of the

recorded signal as those onsets may be subject to the inaccuracy

of human motor action. For this application it is advantageous

to retrieve a beat grid without possible fluctuations. This is done

by using phase information: the phase shift of the complex expo-

nential function’s periodicity (Fourier transformation) can be ex-

tracted by calculating the phase of the found optimum path. The

phase directly measures the location of the beats as a beat occurs

every time the phase strides a multiple of 2π. This approach is

illustrated in Fig. 3. This leads to an increased precision similar to

the instantaneous frequency tracking by [13]. As a result, without

the necessity of a finely sampled set of tatum candidates efficiency

is increased (see Sec. 5).

The following modifications were made regarding the enhance-

ment of the tempogram and information extraction:

Modified tempogram The tempogram is enhanced by the infor-

mation of how well the phase of a frame conforms with its

expected value, calculated by the time difference between

two consecutive frames and the tatum value.

Phase information In contrast to the tatum information of the op-

timum path, the phase of the path is used. It contains all the

information needed to calculate the positions of the beats.

Especially if the set of tatum grids is chosen to be coarse for

low-cost implementation, the phase can be used to calculate

the actual tatum more precisely.

Phase reliability A measure for the phase’s reliability is used to

spot frames, in which the phase information becomes mean-

ingless. This happens when there are no significant onsets.

For unreliable frames the beats will be discarded and re-

placed by an interpolating beat placement.

As a last step, the start and stop cues obtained by pressing a

foot switch are aligned to the nearest estimated beat. There are no

additional rules for the beat-alignment (e.g. loop length in beats

has to be a multiple of 4) to keep enough responsibility for phras-

ing to the player.
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Figure 3: Visualization of the phase-based beat estimation. The

cosine and sine components of the Fourier expansion for a tatum τ

(dashed line) are shown in the graph on top. The Fourier transfor-

mation of the ODF yields a complex-valued tempogram value M ,

whose phase (bottom) carries the desired time-shift information of

the corresponding tatum grid.

3. ODF: SPECTRAL FLUX LOG FILTERED

The spectral flux log filtered onset detection function consists of a

block-wise transformation into the frequency domain followed by

adaptive whitening. The signal then runs through a filter bank con-

sisting of 50 Mel frequency bands. Last, after taking the logarithm,

the temporal differences are summed up to obtain the ODF.

3.1. Short Time Fourier Transform (STFT)

Prior to the transformation into the frequency domain the signal

x(t) is blocked into N overlapping frames with a length of K =
2048 samples and the hopsize h = 480 samples, resulting in

an overlap of roughly 77%. With fs = 48 000Hz subsequent

frames are 10ms apart (resulting in an ODF sampling frequency

of fs,O = 100Hz). Each frame is windowed with a Hann window

w(t). The windowed signals xn(t) can be calculated with

xn(t) = x(t+ nh)w(t), n ∈ [0, N − 1], t ∈ [0, K − 1]. (1)

Each frame is transformed into the frequency domain using the

discrete Fourier transform:

X(n, k) =

K−1
∑

t=0

xn(t) · e
−i 2πkt

K , k ∈ [0, K − 1] (2)

with n denoting the frame, k the frequency bin, and t the discrete-

time index.

3.2. Adaptive Whitening

The peak spectral profile

P (n, k) =

{

max{|X(n, k)|, r} for n=0,

max{|X(n, k)|, r, µP (n−1, k)} otherwise
(3)

determines the spectral whitening in the division

X(n, k)←
X(n, k)

P (n, k)
, (4)

in which µ is the forgetting factor and r the floor parameter [10].

The choice µ = 0.997 and r = 0.6 has proved suitable for the

application.

3.3. Logarithmic-Magnitude Mel Spectrogram

The main difference to the regular spectral flux onset detection is

the analysis in sub-bands. Consequently, the magnitude bins of

the spectrogram |X(n, k)| are gathered by filter windows F (k, b)
with B = 50 overlapping filters with center frequencies from

94Hz to 15 375Hz. Each window has the same width on the Mel-

scale. The windows are not normalized to constant energy, which

yields an emphasis on higher frequencies. The Mel spectrogram

Xfilt(n, b) is given by:

Xfilt(n, b) =

K−1
∑

k=0

|X(n, k)| · F (k, b), b ∈ [0, B − 1] (5)

with b denoting the sub-band number. The logarithmic-magnitude

Mel spectrogram is obtained by applying the logarithm to the Mel

spectrogram

X
log

filt (n, b) = log(λ ·Xfilt(n, b) + 1) (6)

with the compression parameter λ. A value of λ = 2 yielded good

results. The additive term +1 assures only positive values.

3.4. Difference

The final step to derive the onset detection function O(n) is to

calculate the difference between the frame n and its previous frame

n− 1, with a subsequent summation of all spectral bins. The half-

wave rectifier function H(x) = x+|x|
2

ensures that only onsets are

considered. Altogether, we obtain the following equation:

O(n) =
B−1
∑

b=0

H(X log

filt (n, b)−X
log

filt (n− 1, b)). (7)

Fig. 4 depicts the above-mentioned steps for the calculation of

the onset detection function.

(a) X(n, k) without whitening (b) X(n, k) with whitening

(c) X
log

filt (n, b) (d) O(n)

Figure 4: Steps of calculation the spectral flux log filtered ODF: a)

spectrogram b) adaptive whitening c) log-magnitude Mel spectro-

gram d) final ODF (black) and the audio signal (gray). The data of

all four figures is normalized to a maximum value of 1.
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4. BEAT ESTIMATION AND START/STOP ALIGNMENT

Out of the derived onset detection function the tempogram is cal-

culated. A dynamic programming approach computes the most

likely tatum path within the tempogram. Afterwards, beats are es-

timated by extracting the optimum path’s phase information and a

possible subsequent interpolation of areas with non-reliable phase

information.

4.1. Tempogram

As described, the tempogram M(j, τ ) is obtained by an STFT of

O(n), evaluated for specific frequencies corresponding to a set of

tatums. This can be expressed as:

M(j, τ ) =

L−1
∑

n=0

O(n+j, τ )w(n)e
−i

2πn

τfs,O , j ∈ [0, J−1] (8)

with j being the ODF frame index, L the ODF frame length,

w(n) the Hann window function, fs,O denoting the ODF sampling

frequency (here 100Hz) and τ ∈ T denoting the tatum out of a

set T with different tatum values between 60ms and 430ms. An

ODF frame length of L = 150 yielded good results, meaning that

one tempogram value represents a 1.5 s frame and the beginning

of one frame is 1

fs,O
= 10ms apart from the beginning of its

predecessor. The total number of time-steps j can be expressed as

J = N − L+ 1.

To emphasize on phase continuity the phase difference be-

tween two consecutive frames dΦ(j, τ ) is calculated and com-

pared to the expected value d̂φ(τ ). The difference of both results

into the phase deviation matrix:

∆Φ(j, τ ) = dΦ(j, τ )− d̂φ(τ ) (9)

with

dΦ(j, τ ) = ∠M(j, τ )− ∠M(j − 1, τ ) and (10)

d̂φ(τ ) =
2π

τfs,O
. (11)

∆Φmapped = ((
∆Φ

π
+ 1) mod 2) − 1 (12)

maps the values to a range of [−1, 1], with a value of 0 indicating

a perfect phase deviation of 0. The modified tempogram M ′(j, τ )
gets calculated as follows:

M
′(j, τ ) = M(j, τ ) · (1− |∆Φmapped(j, τ )|)

κ
(13)

whereas κ denotes the degree of factoring in the phase confor-

mance. A value of κ = 100 was ascertained experimentally and

suited well for this application. Fig. 5 shows the sharpening of the

tempogram due to this modification. The used signal is a hi-hat

sequence with leaps in tempo. With κ the amount of sharpening

can be adjusted.3

As a last step, M ′(j, τ ) gets normalized to a maximum abso-

lute value of 1:

M
′(j, τ )←

M ′(j, τ )

max
j,τ
|M ′(j, τ )|

. (14)

3In general, for a coarsely sampled set of tatums a lower κ value should
be chosen. Otherwise, the phase nonconformance as a consequence of a
non-sampled tatum would lead to a falsification of the tempogram.

(a) κ = 20 (b) κ = 100

(c) κ = 20 (d) κ = 100

Figure 5: Effect of different κ values on the modified tempogram.

The range of the depicted values is between 0 and 1, with dark blue

representing 0, yellow representing a value of 1. a) and b) show

(1− |∆Φmapped(j, τ )|)
κ, c) and d) show the modified tempograms

M ′(j, τ ).

4.2. Optimum Tatum Path

The optimum tatum path can be extracted out of the modified tem-

pogram by maximizing the utility function U(τ , θ). This function

is designed in order that high absolute tempogram values |M ′(j, τ )|
(tatum conformance) are advantaged and high leaps in tempo/tatum

will result in a penalty (second term in equation (15)). The goal is

to find a series of tatum values τ = [τ0, ...τj , ...τJ−1], with τj the

tatum value for ODF frame j, which maximizes the utility function

U(τ , θ) =

J−1
∑

j=0

|M ′(j, τj)| − θ

J−1
∑

j=1

|
1

τj−1

−
1

τj
|, (15)

with θ denoting the penalty factor for a tatum difference between

two consecutive frames. With θ = 0 the maximization could be

replaced by picking the tatum with the highest absolute tempogram

value. The higher θ the smoother the tempo path due to a higher

penalty for tempo changes. A value of θ = 20 suited well for this

application.

The search for the maximum of the utility function can be done

efficiently with dynamic programming. Therefore, the maximum

can be written as:

max
τ

U(τ , θ) = max
τ

D(J − 1, τ ) (16)

with the recurrent equation

D(j, τ)=







|M ′(0, τ)| if j=0,

|M ′(j, τ)|+max
τj−1

(

D(j−1, τ)−θ

∣

∣

∣

1

τj−1

− 1

τj

∣

∣

∣

)

otherwise

(17)
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Figure 6: Example of filling gaps with low phase reliability. The black line represents the phase with gaps as the phase reliability (purple)

drops below 0.1. The estimated beats (blue) are gathered with the phase information, the interpolated beats (orange) are filled in by

interpolation. The impression of the phase keeping its value right before and after a gap is an artifact of phase-unwrapping.

Basically, after initialization the first frame j = 0, for every

tatum τj of the frame j the algorithm looks for that tatum τj−1

of the previous frame which yields the most rewarding transition

τj−1 → τj . With memorizing τj−1,max for every D(j, τ ), the

optimum path can be found by backtracking τj−1,max starting with

the tatum argmax
τ

D(J − 1, τ ) of the last frame.

The optimum path extracted for the previous shown tempogram

is depicted in Fig. 7. The path (red line) follows the leaps in tempo.

Figure 7: Resulting optimum tatum path for a hi-hat signal with

leaps in tempo.

4.3. Beat Placement and Start/Stop Alignment

As described above, the beat placement uses the phase φ(n) of

the optimum tatum path τ = [τ0, ...τj , ...τJ−1]. The phase can be

obtained from the tempogram M(j, τj) by calculating the angle of

the complex values. Also the modified tempogram M ′(j, τ ) can

be used here, as it holds the same phase information. To find a

phase value for every time step n of the ODF, the tempogram time

steps j have to be mapped to n:

j → n = j +
L

2
. (18)

The offset of L
2

issues from the phase information being calculated

for a frame with length L (see equation (8)). So the center of

each frame was chosen for the mapping. Nevertheless, the phase

information is valid for the beginning of each frame, therefore,

the phase itself also has to be adjusted to the frame center by the

expected amount L
2
d̂φ(τ ). So the extraction of the phase can be

formulated as follows:

φ(n) = φ(j+
L

2
)=∠M(j, τj)+

L

2
d̂φ(τj), for j∈ [0, J−1]. (19)

The remaining phase information for n < L
2

and n ≥ J + L
2
=

N − L
2
+ 1 has to be derived by extrapolation. The phase then

can be used to place beats to the ODF. A beat occurs every time

the phase strides a multiple of 2π. This search is equal to the

calculation of positive4 zero crossings of sin (φ(n)).
With the phase difference between two consecutive frames

dφ(n) yielding the current phase step, the current tatum can be

calculated analogous to equation (11):

τ (n) =
2π

dφ(n)fs,O
. (20)

The τ (n) values are not bound to those of the tatum set T and, as

a consequence, are sampled with a higher precision.5 Averaging

these values results into the mean tatum τ̄ , which can be used for

the phase extrapolation and interpolation of beat gaps (described

hereafter).

Additionally to the angle of the tempogram, the magnitude is

used as a measure of phase reliability. If the magnitude is lower

than a predefined threshold, the phase information is considered

meaningless. Low tempogram magnitudes can occur in frames

with only few or no onsets. In that case, the phase information

gets discarded and the resulting gaps get filled with equally spaced

beats corresponding to the mean tatum. An example of interpo-

lated beats is shown in Fig. 6.

The last step is to align the start and stop cues to the estimated

beat positions. This is easily done by shifting each cue the closest

beat.

4transition from negative to positive values
5see the example in Section 5.2 for demonstration
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5. PERFORMANCE EVALUATION

This sections shows exemplarily how the algorithm reacts to dif-

ferent signals. Also the performance concerning the real time ca-

pability is investigated. Additionally, the perceptibility of the re-

maining gaps is treated here.

5.1. Beat Interpolation of Low Magnitude Gaps

Fig. 8 shows ODF and tempogram of a recorded phrase with sus-

taining chords. Hence, only a few onsets exist at around t =5 s
and 10 s as both ODF and tempogram reveal. Even the start of the

phrase does not hold any useful tatum information. Nevertheless,

the algorithm found the optimum path, which fits the audio signal

best. Due to the vanishing magnitude of the tempogram between

t =2 s and 4 s and between t =6 s and 9 s, the phase reliability

measure is not high enough to place reliable beats. As a conse-

quence, two gaps emerge after discarding unreliable beats, which

are filled with interpolated beats, as shown before in Fig. 6.

0

0.25

0.5

0.75

1

(a) Onset detection function

(b) Tempogram

Figure 8: Onset detection function (a) and tempogram (b) of a

recorded phrase with only a few onsets.

5.2. High Tatum Precision despite Coarse Sampling

To demonstrate the higher tatum precision than the sampled tatum

grids due to factoring in phase information, a semiquaver hi-hat

signal at tempo 93 bpm is used. The resulting tatum is τ0 =
161.29ms. The used tatum grids of the tempogram stage are sam-

pled with a coarse resolution: the examined tatum values next to

τ0 are 155.01ms and 165.89ms. The corresponding tempogram

is depicted in Fig. 9.

Figure 9: Tempogram with low tatum sampling.

The optimum path search yielded a constant tatum of τ =
165.89 ms, as being closest to τ0. However, the phase information

yielded an average tatum of τ̄ = 161.40ms, which is remarkably

closer, with a difference of just 0.11ms instead of 4.6ms.

5.3. Greatest Common Divisor (GCD) of Existing Tatums

The algorithm tries to find that tatum which fits best to all occur-

ring tatums. This mechanism is demonstrated with a signal con-

sisting of alternating blocks of quaver notes and quaver triplets. At

tempo 100 bpm, the time difference between two successive qua-

ver notes is τ1 = 300ms and for quaver triplets τ2 = 200ms,
respectively. As expected, these tatum values also occur in the

tempogram with a high presence measure (see Fig. 10). However,

the optimum tatum path was found for a tatum τ3, which does not

occur explicitly, but is implied by the two tatums τ1 and τ2 by be-

ing the greatest common divisor τ3 = gcd(τ1, τ2) = 100ms. All

occurring events can be assigned to beats placed with that tatum.

Figure 10: Effects of complex rhythms on the algorithm’s perfor-

mance. Optimum tatum path (red) does not follow the explicitly

occurring tatums (150ms and 300ms), but their greatest common

divisor (100ms).
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Table 1: Results of time profiling of two audio files with different

durations and different number of tatums nτ . The algorithm was

implemented in Matlab and executed on a 2.3GHz Intel Core i7

processor. ODF: onset detection function; TG: tempogram calcu-

lation; path: optimum path search; BE: beat estimation

duration

(in s)
nτ

computation time (in % of duration)

ODF TG path BE overall

9.3 60 1.76 0.08 2.51 0.10 4.45

9.3 120 1.83 0.16 5.93 0.14 8.06

9.3 240 1.76 0.26 16.48 0.14 18.64

22.2 60 1.02 0.09 2.85 0.07 4.03

22.2 120 1.02 0.17 6.80 0.06 8.05

22.2 240 1.00 0.23 17.02 0.07 18.32

5.4. Real Time Capability

The above described algorithm only embodies a useful tool for live

looping if it is real time capable. At a first glance this means, that

all the calculations have to be completed when the musician stops

the recording and expects the phrase being repeated seamlessly.

This actually is not possible as the back tracking process of the

optimum tatum path estimation cannot start until the last frame, in

which the stop cue occurs, was processed.

Fortunately, by accepting a possibly perceivable gap at the first

iteration, real time capability can be easily achieved: now the al-

gorithm has to be completed within the first unaltered iteration of

the phrase, which usually has a duration between 3 s to 10 s.
Table 1 shows the needed time for computations in percentage

of the duration of two different audio signals. The data shows that

the algorithm’s performance in regards of computation time de-

pends strongly on the number of evaluated tatums nτ as the com-

puting effort of the tempogram increases linearly and that of the

optimum path search quadratically with nτ . The rather constant

relative overall time shows a linear relationship with the signal’s

duration. Note that these results are gathered by a single execution

of the algorithm for each combination of audio signal and number

of tatums and, therefore, may be affected by different CPU loads.

Also these results were gathered in an offline version of the algo-

rithm. By computing the ODF and parts of the tempogram and

the optimum path search during the recording phase, these values

can even be lowered. It can therefore be concluded that the algo-

rithm is real time capable and only needs a fraction of the recorded

signal’s duration for computation.

5.5. Perceptibility of Remaining Gaps

Hibi [14] and Rudrich [15] investigated the perception of rhythmic

perturbances. Latter found a dependency on musical training onto

the audibility of rhythm perturbances in a monotonic, isochronous

sequence. The found threshold of subjects with musical back-

ground was remarkably lower with 5.4% of the inter onset inter-

val than that of subjects without musical training (9.0%). We used

these thresholds to validate the algorithm’s performance regarding

the reduction of perceivable gaps induced due bad timing of the

start and stop cues. Actually, for a seamless performance these

cues do not have to sit perfectly on the same musical measure. It

is sufficient when both cues have the same offset to an arbitrary

measure. As a consequence, only the difference of both offsets is

used as a measure for the gap.

Table 2: Results of validation of the algorithm. Values are given

in ms and show the resulting gaps introduced by the algorithm.

Marked (*) L16th levels indicate the algorithm finding the tatum

for quaver notes (300ms), otherwise the tatum of semiquavers

(150ms) is found.

σ 1/f noise STD

in samples / ms
L16th in dB

0 −10 −20 −30* −∞*

0 / 0 0.23 0.29 0.44 1.92 1.88

100 / 2.08 0.17 0.15 0.42 0.10 1.54

200 / 4.17 −0.56 1.02 2.96 −0.75 1.23

300 / 6.25 −3.40 −1.73 −2.06 2.65 0.23

400 / 8.33 −6.31 1.21 0.85 −1.56 −4.35
500 / 10.42 5.02 4.25 1.00 0.73 −2.44

To validate the algorithm in an analytical and ecological valid

way, a synthetic drum beat was used due to its advantages:

• easy reproducibility

• control of parameters (rhythm fluctuation and presence of

the tatum)

• start and stop cues are easy to determine

• musical context.

hi-hat

snare

bassdrum

Figure 11: Score of the synthetic drum beat used for evaluation.

The drum beat’s score is depicted in Fig. 11. The tatum pres-
ence was adjusted with the L16th level, representing the level of

every other hi-hat note (highlighted blue). Rhythm Fluctuation is

realized with an inserted 1/f noise jitter with standard derivation

values between 0ms and 10ms.

For different combinations of the above mentioned parame-

ters, the algorithm processes audio files with pre-defined and per-

fectly timed start and stop cues. The alteration of these cues leads

to a gap introduced by the algorithm, which serves as a measure

for performance as it shows how well the beats can be aligned at

best.

The validation’s results are depicted in Table 2. The data

shows the gap introduced by the algorithm. The smaller the val-

ues, the better the algorithm’s performance. Negative values indi-

cate a negative gap, meaning the interval was shortened (otherwise

lengthened). For L16th = −30 dB and L16th = −∞ dB the tatum

found was 300ms corresponding to the quaver notes in the drum-

beat. As can be seen for no introduced jitter (σ = 0) the algorithm

creates a gap, especially when the tatum doubles. Nevertheless,

when comparing to the results of Hibi [14] and Rudrich [15] all

gaps are smaller then the found thresholds of perception.
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6. CONCLUSIONS AND OUTLOOK

We proposed a real-time capable beat-aligning guitar looper. It is

mainly characterized by its ability to support the temporally accu-

rate handling of the looper without any further prior information

and additional constrains. Start and stop cue alignment is done

automatically during the first repetition of the recorded phrase. In-

dependent of tempo, this adjustment guarantees that the resulting

gap stays within rhythmic inaudibility. For traceability, this was

evaluated within an ecologically valid setup.

It is obvious that the computation time of the described algo-

rithm is dominated by the optimum path search algorithm. Infor-

mal tests showed, that a divide and conquer approach reduces the

complexity and computation time. In this approach the optimum

path search combines the output of separately analyzed tatum oc-

tave sets, instead of the entire tatum set.

As the beat-aligning looper retrieves all beats of the recorded

phrase, it is a promising basis for further development of an au-

tomatic accompaniment (e.g. rhythm section) for practice or live-

performance purposes.

A detailed view on the conducted listening tests and the eval-

uation of the algorithm can be found in [15].
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