
Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

A NONLINEAR METHOD FOR MANIPULATING WARMTH AND BRIGHTNESS

Sean Enderby

Digital Media Technology Lab

Birmingham City University

Birmingham, UK

sean.enderby@mail.bcu.ac.uk

Ryan Stables

Digital Media Technology Lab

Birmingham City University

Birmingham, UK

ryan.stables@bcu.ac.uk

ABSTRACT

In musical timbre, two of the most commonly used perceptual di-

mensions are warmth and brightness. In this study, we develop a

model capable of accurately controlling the warmth and brightness

of an audio source using a single parameter. To do this, we first

identify the most salient audio features associated with the chosen

descriptors by applying dimensionality reduction to a dataset of

annotated timbral transformations. Here, strong positive correla-

tions are found between the centroid of various spectral represen-

tations and the most salient principal components. From this, we

build a system designed to manipulate the audio features directly

using a combination of linear and nonlinear processing modules.

To validate the model, we conduct a series of subjective listening

tests, and show that up to 80% of participants are able to allo-

cate the correct term, or synonyms thereof, to a set of processed

audio samples. Objectively, we show low Mahalanobis distances

between the processed samples and clusters of the same timbral

adjective in the low-dimensional timbre space.

1. INTRODUCTION

The perception and manipulation of musical timbre is a widely

studied aspect of sound production. This is because timbre, unlike

pitch and loudness, is difficult to measure linearly along a single

intuitive dimension. This means the focus of timbral research is

often on the use of dimensionality reduction [1, 2] as a method

of interpreting some complex representation in timbre space. In

the study of musical timbre, natural language is often used to de-

fine perceptual dimensions [3]. This is a method of quantifying

descriptions of sound, often through the use of correlation with

audio features [4]. In music production, this descriptive vocabu-

lary can also be used to define sound transformations [5]. This

means we are able to control audio processing functions using pa-

rameters that are intuitive to the user as they represent high-level

perceptual aspects of sound, as opposed to low-level algorithm pa-

rameters. For example, SocialEQ [6] allows participants to select

a descriptive term, then to derive its spectral representation by rat-

ing a series of examples. Similarly, the SAFE Project [7] allows

users to describe audio effects transformations directly within a

Digital Audio workstation (DAW), which can then be processed

and recalled to crowd-source processing parameters.

One of the most common perceptual dimensions in timbral re-

search is the warmth / brightness dimension [8, 9]. This is because

participants often tend to agree with confidence on the statistical

representation of the two descriptive terms [4], and they are often

considered to be orthogonal [10]. Because of this, a number of

studies have focussed specifically on manipulating this dimension

for musical purposes. For example, Stasis et al. [11, 10] pro-

vide a 2-dimensional interface, derived using machine learning,

Zacharakis et al. [12] present a model using FM-Synthesis, and

Williams and Brookes [13, 14] provide a timbre morphing system,

capable of independently modifying warmth and brightness.

In this study, we identify the key audio features associated

with warmth and brightness from a dataset of annotated musical

transforms. We then propose an audio effect that combines linear

and nonlinear modules in a way that allows us to manipulate the

audio features directly associated with the perception of warmth

and brightness in a sound source. To validate the performance of

the effect, we then provide both objective and subjective valida-

tion.

2. PERCEPTUAL DIMENSIONS

To identify salient audio features associated with warmth and bright-

ness, we compile a matrix of timbral data collected via the SAFE

Project1. Here, annotated audio effect transformations are col-

lected from within a DAW environment and uploaded anonymously.

Each instance contains a set of plug-in processing parameters, an

extensive feature set taken before and after processing has been

applied, a string of descriptive terms, and a table of user meta-

data. As shown in [4], warmth and brightness tend to be related to

changes in the spectral envelope associated with equalisation and

distortion, so we therefore discard entries from compression and

reverb effects. This leaves us with 1,781 semantically annotated

transforms. As the tests are distributed over a wide network we do

not have extensive data about the test participants, however it is as-

sumed that each of the users of the system have a reasonable level

of production experience. To capture the timbral modification ap-

plied by each of the transforms, we analyse the feature differences

over a range of temporal, spectro-temporal and abstract statistical

audio features.

2.1. Features

To identify the most salient features associated with the warmth

/ brightness dimension, we apply dimensionality reduction to the

dataset using Principal Component Analysis (PCA) and identify

the most highly correlated features with the Principal Components

(PCs) that explain the highest variance. This is demonstrated in

Figure 1, in which the first two PCs of the timbre space describ-

ing the feature manipulations are shown. Here, the audio feature

differences of each described transform is projected into two di-

mensional space, and the centroid for each term is found. The size

of the term indicates its relative confidence (a measure which is

inversely proportional to the variance within a cluster). These con-

fidence scores for entries in the dataset are given in Table 1. Addi-

tionally, Figure 2 shows the isolated transforms described as either

1Data and plug-ins available at: www.semanticaudio.co.uk
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warm or bright. This shows the distribution of points from each

class are separable along PC 2. In the other PCs, these descriptors

occupy very similar ranges, suggesting that the distinction between

warm and bright is heavily loaded onto the second PC. To identify

the salient features associated with each dimension, we correlate

each feature vector with the first two PCs. The audio features with

correlations which satisfy |r| > .7 and p < .001 are show below.
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Figure 1: A biplot of the feature difference timbre space, where µp

and KI represent the peak spectral centroid and spectral irregu-

larity projected into low-dimensional space.
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Figure 2: Transforms labelled with warm and bright in the feature

difference timbre space.

Term C

warm 1.5

deep 1.4

bright 1.1

full 0.9

air 0.8

cream 0.8

Term C

box 0.7

clear 0.5

thin 0.5

mud 0.4

fuzz 0.4

rasp 0.4

Term C

boom 0.4

tin 0.4

crunch 0.3

harsh 0.2

smooth 0.1

Table 1: The confidence scores (C) for terms in the feature differ-

ence timbre space.

PC 1: Irregularity (r = 0.985), Irregularityp (r = 0.964),

Kurtosisp (r = 0.935), Skews (r = 0.929),

Irregularityh (r = 0.927), Kurtosish (r = 0.919),

Skewp (r = 0.890), Std (r = 0.873), RMS (r = 0.873),

Skewh (r = 0.865), Kurtosiss (r = 0.835), Var (r = 0.812).

PC 2: Centroidp (r = −0.855), Centroidh (r = −0.853),

Rolloffs (r = −0.852), Stdh (r = −0.845),

Stdp (r = −0.834), Centroids (r = −0.817),

Slopes (r = −0.771).

Where, the subscript s denotes features extracted from a magni-

tude spectrum, p denotes features taken from a peak spectrum, and

h denotes features taken from a harmonic peak spectrum. Features

with no subscript are either temporal or abstract spectral features.

Spectral irregularity in this study is calculated using the method

described by Krimpoff et al. [15].

These results indicate that the dimension along which warmth

and brightness can be considered separable (PC 2), is highly corre-

lated with spectral centroid, spectral standard deviation and spec-

tral roll off. Negative values of PC 2 correspond to an increase

in these features and positive values to a decrease. Signals can

therefore be made warmer by reducing the spectral centroid and

‘brighter’ by increasing it. This is most often done by introduc-

ing more energy at low or higher frequencies respectively. These

findings are aligned with similar studies of musical timbre such as

[8, 2], in which the spectral centroid of a sound source is demon-

strated to be a salient low-level descriptor in the perception of both

warmth and brightness.

2.2. Synonyms

Given that the dataset has a large number of descriptive terms,

we apply agglomerative clustering to the feature space in order

to identify potentially synonymous terms in the dataset. This al-

lows us to judge the relative distances between data points in this

space, thus providing a method of evaluating dissimilarities during

subjective evaluation. Terms with less than 4 entries are omitted

for readability and the distances between data points are calculated

using Ward criterion [16]. The clusters are illustrated in Figure 3,

where the prefix E: represents transforms taken from the equaliser

and D: represents transforms taken from the distortion. The posi-

tion, µd,k of a term, d, in the kth dimension of the audio feature

space is calculated as the mean value of feature k across all Nd

transforms labelled with that descriptor, given in Eq. 1.

µd,k =
1

Nd

Nd
∑

n=1

x̄d,n,k (1)
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Figure 3: Clustering of descriptors from the both the distortion

and equaliser.

The agglomerative clustering process demonstrates that the

data points tend to cluster based on relative spectral energy. For

example, terms that typically describe signals with increased high

frequency energy such as bright, thin, tin and air all have low

cophenetic distances to each other. Similarly, terms typically asso-

ciated with increased low frequency energy such as boom, warm,

deep and full fall within the same cluster. In this case, the clus-

ter containing warm and the cluster containing bright are clearly

separated, with a minimum cophenetic distance of 22.6.

3. PARAMETERISATION OF SPECTRAL CENTROID

Given the correlation between the warmth / brightness dimension

(PC 2) and spectral centroid, we investigate methods for manipu-

lating the feature directly, thus being able to increase brightness by

increasing the centroid, or increase warmth by lowering the spec-

tral centroid. A primitive method for moving the centroid towards

a given frequency (µ) is to increase the spectral energy at that fre-

quency, either by introducing a sinusoidal component to the signal

or to use a resonant filter, centered around µ. Whilst this works

conceptually, it is destructive to the original structure of the spec-

trum. As the centroid is moved towards the desired frequency the

spectrum is dominated by a sinusoid or resonance at µ.

Less destructive methods include that used by Zacharakis et

al [12], where the spectrum is split into two bands, one above and

one below the spectral centroid. The relative amplitudes of these

bands can then be altered to manipulate the frequency of the spec-

tral centroid. This more accurately preserves the original signal’s

structure, as no additional spectral components are introduced and

the relative levels of partials within each band remain the same.

Using this method the new spectral centroid will lie somewhere

between the respective centroids of the two bands. The relative

gains of the two bands required to reproduce a given spectral cen-

troid µ, can be calculated using Equation 2. To facilitate precise

control of the spectral centroid these bands should not share any

frequency components.

∑N

n=c+1
an

∑c

n=1
an

=
µl − µ

µ− µu

, µl ≤ µ < µu or µu < µ ≤ µl

(2)

Where µl and µu are the spectral centroid of the lower and

upper bands, and c is the highest frequency spectral component in

the lower band.

Alternatively, Brookes et al. [13] employ a spectral tilt to mod-

ify spectral centroid, applying gain to the partials of a signal as a

linear function of their frequency. This allows the spectral cen-

troid to be altered in frequency, whilst still retaining the frequency

content of the signal. A disadvantage of this method is that the

change in centroid cannot be easily parameterised as it depends on

the content of the signal being processed.

3.1. Proposed Model

We propose a more flexible method for directly manipulating the

spectral centroid of the input signal using a nonlinear device (NLD).

The effects of an NLD are more easily predicted for sinusoidal in-

puts, generating a series of harmonics of the input frequency. To

ensure a sinusoidal input to the NLD, the system is restricted to

processing only tonal signals with a single pitch, which can be

represented by their fundamental frequency (f0). A low-pass filter

is applied to isolate the f0 which is then processed with an NLD

generating a series of harmonics relevant to the signal. This is

then high-pass filtered, leaving a band that consists solely of gener-

ated harmonics. A second band is generated by low-pass filtering

the signal at the spectral centroid and the relative levels are then

adjusted in order to manipulate the frequency of the centroid µs.

Separating the bands at the spectral centroid in this way ensures

that their respective spectral centroids sit either side of the input’s

centroid after processing has been applied. In this instance, we

generate harmonics in the high frequency band by applying Full

Wave Rectification (FWR) to the isolated fundamental, this en-

sures the system is positive homogeneous. A schematic overview

of the system is presented in Figure 4.

x[n]

f0 Tracker

LPF

µ Tracker +

FWR HPF mH

LPF mL

y[n]

Figure 4: The system employed in the warmth / harshness effect.

This is conceptually similar to the two band method proposed

by [12], but allows the second band to contain frequency content

which was not in the original signal. This method has advantages

over manipulating the amplitudes of two bands using only linear

filters. For example, the nonlinear device can still be used to re-

construct the high frequency portion of the signal and the relative

gains adjusted similarly to if two filters were used. Alternatively,

the properties of the NLD can be altered to change the upper band’s

centroid. This provides more flexibility allowing the centroid to
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be changed independently of some other features. For example,

changing the gains of two bands will change the spectral slope of

the signal. If instead additional partials are introduced to the upper

band, with amplitudes which are determined by the signal’s current

slope, the centroid can be changed, whilst the slope is unaltered.

The effect is controlled using a single parameter p, which

ranges from 0 to 1 and is used to calculate the respective gains

mL and mH , applied to the low and high frequency bands using

Equation 3.

mH = p
3

mL = 1−mH (3)

When p = 0 the output is a low pass filtered version of the in-

put signal resulting in a lower spectral centroid than the input. This

corresponds to transforms described as warm in the SAFE dataset.

When p = 0.5 additional harmonic energy is introduced into the

signal, meaning the transform should be perceived as bright. To

achieve this, the exponent in pn was set experimentally, so that

the Mahalanobis distance between the bright cluster and the trans-

form’s feature differences is minimised. When p = 1 the out-

put signal consists primarily of high order harmonics resulting

in an extreme increase in spectral centroid. This is perceived as

Harshness, which in the SAFE dataset is defined as an increase in

spectral energy at high frequencies, as shown in Figure 5.
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Figure 5: Mean Bark spectra of transforms labelled warm, bright

and harsh in the SAFE dataset. Here, Bark spectra are used to

represent the spectral envelopes of the transforms as these are the

only spectral representations collected in-full by the SAFE plug-

ins due to data protection.

When transforms are applied using a distortion, bright and

harsh are considered to be very similar, with a low cophenetic dis-

tance of 10.6 (see Figure 3), however they exhibit some subtle dif-

ferences in transforms taken from the equaliser, with a cophenetic

distance of 16.5. This is demonstrated in Figure 1, where harsh

sits below bright in PC 2.

4. MODEL VALIDATION

The performance of the effect is evaluated using a set of ten test

signals, comprising two electric bass guitars (B1 and B2), a flute

(F), two electric guitars (G1 and G2), a marimba (M), an oboe

(O), a saxophone (S), a trumpet (T) and a violin (V). The sig-

nals were adjusted to have equal loudness prior to experimenta-

tion. Firstly the effects are evaluated objectively by comparing

them to the analysis performed in section 2. Secondly the effects

are evaluated subjectively through a series of perceptual listening

tests.

4.1. Objective Evaluation

The performance of the effect is evaluated objectively by examin-

ing how it manipulates the features of the test signals. The effect

is used to process each of the signals with its parameter p set to

0 (warm), 0.5 (bright) and 1 (harsh). The audio features of the

unprocessed and processed signals in each of these applications

are calculated in the same manner as in the SAFE plug-ins. These

audio features are then compared to those taken from the SAFE

dataset.

Each combination of descriptor and test signal is measured to

find the distance between changes in the feature space caused by

the effect, and points labelled with the descriptor in the feature

difference timbre space. The performance of the effect, with a

particular parameter setting on a particular test signal is measured

by projecting the extracted audio features to a point in the timbre

space. The Mahalanobis distance, M(x, d), between this point x,

and the distribution of transforms labelled with the relevant term

d, is taken using Equation 4

M(x, d) =
√

(x− µd)TΣ
−1
d (x− µd) (4)

Where x is a column vector containing the coordinates of the

point in the timbre space, µd is a column vector containing the

mean coordinates of all transforms in the timbre space labelled

with descriptor d and Σd is the covariance matrix of those trans-

forms’ coordinates in the timbre space. Where there are more than

five transforms in the distribution, the coordinates in the first five

PCs of the timbre space are used. Where the number of points in

the distribution, Nd, is lower, only the first Nd−1 coordinates can

be used in order to avoid Σd being singular. Where the descriptor,

d, is represented by two distributions of transforms, one from the

distortion and one from the equaliser, the Mahalanobis distance

from both distributions is taken and the minimum distance is con-

sidered the measure of performance.

4.2. Subjective Evaluation

To assess the performance of the effect subjectively, a series of

perceptual listening tests were undertaken. For the purposes of

testing, the warmth / brightness effect was implemented a DAW

plug-in. Participants were presented with a DAW session contain-

ing a track for each of the test signals. The plug-in was used on

each track with a simple interface labelled “Plug-In 1”, shown in

Figure 6. To mitigate influence of the plug-in’s interface layout on

the result of the experiment, the direction of the parameter slider

was randomised for each participant. The order of the tracks in the

DAW session was also randomised to mitigate any effect the order

of tracks may have on results.

For each signal, participants were asked to first audition the

effect to become accustomed to how changing the parameter value

affects that particular input signal. Once they had investigated the

operation of the effect they were asked to label the parameter slider

at three positions (p is equal to 0, 0.5 and 1) with a term they
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Figure 6: The interface used for assessing the performance of the

warmth / brightness effect.

felt best described the timbre of the effect at that parameter set-

ting. A list of available terms was provided in a drop down list

at each of the 3 parameter values to be labelled, pictured in Fig-

ure 6. The available terms were airy, boomy, boxy, bright, clear,

creamy, crunchy, deep, full, fuzzy, harsh, muddy, raspy, smooth,

thin, tinny and warm. These were chosen for their confidence

scores and number of entries in the SAFE dataset. For each com-

bination of signal and parameter positions, there is an intended de-

scriptor (those the effects were designed to elicit) and a descriptor

provided by the participant.

We compare the participant responses against the hierarchical

clustering performed in Section 2.2. The dendrogram shown in

Figure 3 provides information about how similar the transforms

described by certain terms are. This information can be used as a

metric describing the proximity of the users’ responses to the in-

tended response. The proximity of two descriptors is measured as

the cophenetic distance between the clusters in which the two de-

scriptors lie. Where a descriptor appears twice in the dendrogram

(from both the distortion and equaliser) the combination of points

which yield the lowest cophenetic distance is used. All listening

tests were undertaken using circumaural headphones in a quiet lis-

tening environment. In total 22 participants took part in the listen-

ing tests, all of whom reported no known hearing problems. On

average participants took 25 minutes to complete the test.

5. RESULTS / DISCUSSION

5.1. Objective Evaluation

The Mahalanobis distances between the test signals after being

processed by the effect and the distributions of corresponding trans-

forms in timbre space are shown in Figure 7. Here, each of the

instrument samples is processed using p = 0 (warm), p = 0.5
(bright) and p = 1 (harsh).

The results show that overall, the warmth setting is timbrally

very similar to the corresponding entries into the SAFE dataset,

with a mean Mahalanobis distance of 1.03 (σ = 0.53). Bright

samples are also very similar, with a mean distance of 1.36 (σ =
0.36). Harshness however is less similar to the distribution of

terms in the dataset µ = 2.41, σ = 1.71. This is potentially

due to the term’s ambiguity, and relatively low-confidence. Harsh-

ness for distortion and harshness for equalisation, for example, fall

into different groups when hierarchical clustering is applied (see

Figure 3). Also, due to the relative number of dataset entries for

each term (warm = 464 entries, bright = 427 entries, harsh = 8

entries), smaller distances from the harsh distribution are deemed
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M
ah

al
an

ob
is

 D
is

ta
n

ce

0
2

4
6

8
10

B1 B2 F G1 G2 M O S T V

Test Signal

Figure 7: Mahalanobis distances for the warmth / brightness ef-

fect.

to be more statistically significant.

5.2. Listening test Results

The mean cophenetic distances between the participants’ annota-

tions of the effect’s parameters and the descriptors warm, bright

and harsh taken from the SAFE dataset are shown in Figure 8.

Here the error bars represent the 95% confidence intervals for each

mean. To show the performance of each instrument sample, mark-

ers on the y-axis indicate the cophenetic distances that correspond

to the cluster heights for the groups containing bright from the dis-

tortion, bright from the EQ, and warm from both plug-ins, as per

Figure 3.
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Figure 8: Cophenetic distances for the warmth / brightness effect.

The results show that almost all of the instrument samples have

mean cophenetic distances that fall within the same cluster when

the effect applies a bright or harsh transform. This means par-

ticipants label parameter states with terms synonymous to the in-

tended term. Samples processed to be warm also have similar sub-
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Figure 9: A matrix showing subjective mis-classifications from the warmth / brightness effect, organised by the frequency of the mis-

classifications across the effect’s intended terms.

jective accuracies, however two of the instrument samples (oboe

and trumpet) have mean distances which are larger than the cluster

heights, suggesting there is more ambiguity in their definition.

Figure 9, shows a mis-classification matrix comparing the us-

age of terms by test participants and the terms that the effects were

designed to produce. Each cell in the matrix represents the fre-

quency of which each of the available descriptors (bottom) was

used to describe the corresponding timbral effect at a given pa-

rameter position. Above the figure is a dendrogram representing

the clustering of terms based on their frequency of usage.

From the figure, it is clear that warm is often correctly as-

signed to the intended transform, but summing the cells of the row

shows that participants only used descriptors in the same cluster as

warm 54% of the time. This suggests that the addition of low fre-

quency energy to the signal does not necessarily invoke the use of

synonyms of warm. When describing the effect, participants used

a term related to the intended descriptor 74% of the time for bright

and 80% of the time for harsh, suggesting that these transforms

were perceptually more similar to the transforms in the dataset.

6. CONCLUSION

We first present empirical findings from our analysis of a dataset of

semantically annotated audio effect transforms, and show that the

warmth / brightness dimension can be loaded heavily onto a sin-

gle PC. The variance of this PC is explained predominantly by the

centroid of the peak, harmonic peak, and magnitude spectra. We

then present a model for the manipulation of timbral features using

a combination of filters and nonlinear excitation, and show that the

model is able to manipulate the respective warmth and brightness

of an audio signal. We verify this by performing objective and

subjective evaluation on a set of test signals, and show that sub-

jects describe the transforms with synonymous descriptors 54%,

74% and 80% of the time for warmth, brightness and harshness

respectively.

By using a NLD component in the feature manipulation pro-

cess, we are able to increase the flexibility of the timbral modifier.

This is because other audio features can be preserved, whilst the

spectral centroid is modified independently. Conversely, the al-

gorithm is currently limited to pitched monophonic sound sources

due to its reliance on tracking the f0 of the input signal. This issue

will be addressed in future work.
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