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ABSTRACT 

In this paper, a new method of blind source separation of 
monaural signals is presented. It is based on similarity cri-
teria between envelopes and frequency trajectories of the 
components of the signal, and on its onset and offset 
times. The main difference with previous works is that in 
this paper, the input signal has been filtered using a flexi-
ble complex band pass filter bank that is a discrete version 
of the Complex Continuous Wavelet Transform (CCWT). 
Our main purpose is to show that the CCWT can be a 
powerful tool in blind separation, due to its strong coher-
ence in both time and frequency domains. The presented 
separation algorithm is a first approximation to this impor-
tant task. An example set of four synthetically mixed 
monaural signals have been analyzed by this method. The 
obtained results are promising. 

1. INTRODUCTION 

In the last years, Blind Audio Source Separation (BASS) has 
been receiving increasing attention. BASS tries to recover the 
source signals from their mixtures, when the mixing process is 
unknown. “Blind” means that very little information is needed to 
carry out the separation, although some assumptions are always 
necessary. Several techniques for solving the BASS problem 
have been developed, such as Computational Auditory Scene 
Analysis (CASA) [1], [2], Independent Component Analysis 
(ICA) [3] or Sparse Decompositions [4]. General methods for 
signal separation, like BASS, require multiple sensors. For ex-
ample, in the stereo (DUET) separation, the delay information 
between the left and right channels can be used to detect the 
number of sources present in the mixture and some kind of 
“scene” situation [5]. But for other applications, a monaural so-
lution is needed. Monaural separation is more difficult because 
we only have information of a single channel. But even in this 
case, the human auditory system itself can segregate the acoustic 
signal into separate streams, according to principles of auditory 
scene analysis (ASA) [6]. One of the most important applications 
is monaural speech enhancement and separation [7]. They are 
generally based on some analysis of speech or interference and 
subsequent speech amplification or noise reduction. Monaural 

BASS of musical signals have been developed in several ways 
[8], [9], [10].  

Most of the authors [5], [8], [9], [10], use the STFT to ana-
lyze the mixed signal in order to obtain its main components or 
partials. In this work we have tried a different approach: the 
BASS of synthetically mixed signals using a complex band pass 
filtering of the signal.  

A capital part of the separation process is based on some kind 
of statistical treatment of the available information. In order to 
find the real importance of this statistical process, we have 
avoided some of the usual limitations for this kind of separation, 
for example the non-overlapping spectra of the different sources. 
Although the purposed technique pretends to be as general as 
possible in the future, all the analyzed signals correspond to two 
different musical instruments synthetically mixed. The algorithm 
is not yet implemented in a frame-to-frame context, so we ana-
lyze the whole signal in a single step. This way it is possible to 
use the onset and offset time of each detected component of the 
mixed signal to obtain a first separation of sources. On the other 
hand, sometimes a single partial incorrectly separated can cause 
a non negligible error. 

This paper is divided as follows: in Section 2 we have in-
cluded a brief introduction to the CCWT, the interpretation of its 
results and the additive synthesis process. The proposed algo-
rithm is presented in Section 3 and the experimental results are 
shown in Section 4. The main conclusions and actual and future 
lines of work are presented in Section 5. 

2. COMPLEX CONTINUOUS WAVELET 
TRANSFORM AND ADDITIVE SYNTHESIS 

The CCWT can be defined in several ways [11]. The most com-
mon is given by the expression: 
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Therefore, the wavelet transform of a signal is equivalent to 
a band pass filtering of the signal. The convolution computes the 
wavelet transform using the dilated band pass filters. We have 
used the Morlet’s wavelet as mother wavelet. In the frequency 
domain, Morlet’s wavelet is a simple Gaussian filter: 
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In this equation, a is the scale parameter, C is a normaliza-
tion constant and ω0 is the central position (frequency or band / 
scale) of the filter. 

We have developed a flexible filter bank of constant Q using 
these Gaussian filters. This work was partially presented in [12]. 
Once overlapped the handicap of developing the CCWT in an 
algorithmic (and so discrete) process, the result of filtering a sig-
nal through this band pass filter bank is a matrix of complex 
numbers (the wavelet coefficients), c(a, t). These coefficients 
carry the information of the temporal evolution (envelopes) and 
frequency trajectories of each partial of the signal (see Figure 1). 
The coefficient matrix has a size NxM where N is the number of 
analysis bands (vertical axis) and M is the number of samples of 
the signal (horizontal axis).  

One example of the modulus of c(a, t) can be seen in Figure 
1, for a signal composed by the mixture of a guitar and a sax. 
The frequencies of the partials of the guitar are the oscillating 
trajectories, while the evolution of the sax is much less variable. 
These differences between partial trajectories will be used later 
to separate the original sources. 

 

Figure 1: The module of the CCWT coefficients of the 
signal obtained mixing the guitar and the sax signals.  

The next step is to obtain the scalogram of the signal. It is 
equivalent to the spectrogram of the Fourier analysis.  It is ob-
tained through the addition of the module of the wavelet coeffi-
cients in the temporal (abscissa) axis. Two examples of scalo-
gram related to a flute and a clarinet are shown in Figure 2. Ob-
serve that some components are common to both signals (for ex-
ample, bands 104-109) and therefore they will be indistinguish-
able in the mixed signal, whose scalogram is the sum.  

Once the scalogram is obtained, we extract the partials of the 
signal. For each peak i of the function, we detect its associated 
upper and lower limit bands, Bsup(i) and Binf(i), (by searching the 
closest minima). Then we perform the summation of the complex 

coefficients c(a, t) between these band limits. The result for the 
ith peak is a complex valuated function Pi(t) whose modulus is 
the temporal envelope of the partial, and whose phase carries the 
instantaneous frequency information of the component.  
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Figure 2: The scalogram of the flute (continuous trace) 
and the clarinet (dotted line). 

Through a simple additive synthesis method, the original sig-
nal x(t) can be obtained performing the summation of these par-
tials: 
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The strength of this technique is that the obtained additive 
model of the signal results to be highly coherent in both time and 
frequency domains. This allows us to extract the instantaneous 
frequency of each component with remarkable precision, and to 
obtain the temporal error of the synthetic signal by means of the 
simple subtraction of the original and the synthetic waveforms 
[12]. 

Now the subject is how to use this information to somehow 
separate the mixed signal into its different sources. 

3. ALGORITHM DESCRIPTION AND 
LIMITATIONS 

As advanced in Section 1, for purposes of simplicity all the ana-
lyzed signals are synthetic mixtures of two different sources. 
This makes the separation process especially instructive. 

First of all, the band pass filtering is performed, obtaining 
the wavelet coefficients matrix c(a ,t), and the scalogram of the 
signal . Using this information, the partials of the signal are cal-
culated. 

A certain partial can be part of one of the sources, or can be 
shared by both of them. Examples of these three possibilities can 
be seen in the Figure 2. The goal is to find at least the partials 
clearly related to each source. 

 DAFX-2 



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009 

In order to separate the sources, some kind of criteria of re-
semblance between partials is necessary. This information can be 
found in the instantaneous frequency and the instantaneous enve-
lope of the partials. The objective is to obtain some kind of simi-
larity pattern between partials of the same source. This pattern 
may be obtained by evaluating how differs the envelope and in-
stantaneous frequency evolution of each partial with respect to 
all other [8]. 

Different partials have a wide range of amplitude values. 
However, scaling each partial by its average, the resulting me-
dium envelopes remain quite close each other. Due to the nature 
of sound, the information given by the instantaneous frequency 
does not oscillate as much as envelopes, and so it is more rele-
vant. Figure 3 shows the envelope evolution and the instantane-
ous frequency of the three most important partials of the mixture 
of a flute and a clarinet. Note that the instantaneous frequency of 
these three partials evolves in a similar manner, despite the nor-
malized amplitudes are not so similar. 

Most of the signals present a high amplitude modulation (es-
pecially at high frequency) reaching sometimes values close to 
zero. In these points, there is no information enough to obtain the 
instantaneous frequency of the partial with accuracy, and it can 
present great oscillations (Figure 3). If the amount of sampled 
points with this problem is too high, the difference in frequency 
evolution can be a source of error. Fortunately this is not our 
case because we are dealing with signals with enough temporal 
duration.  

  
Figure 3: Temporal evolution of the instantaneous fre-
quency and the envelope (both normalized to their me-
dian value) of the first three partials of the clarinet plus 
flute signal. 

The distance between amplitudes and frequency trajectories 
(calculated over a time Δt) can be obtained from the mean square 
error [8]: 
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where scaling coefficients 
iji fmm ,, ))  and 

jf  are the average 

value of amplitude and frequency of the ith and jth partials, re-
spectively, while mi, j(t) and fi, j(t) are the respective instantaneous 
amplitude and frequency of the same partials.  

The global distance between partials is a weighted summa-
tion of both parameters: 
 ( ) ( ) ( jidwjidwjid mmff ,,, + )=  (8) 

where wf and wm are respectively the weights associated to the 
instantaneous frequency and the envelope mean square errors. In 
particular, the used ad hoc values for the weights are wf=0.9 and 
wm=0.1. The separation results do not depend significantly with 
respect to the exact value of these parameters. 

Equation (8) is a distance between pairs. If the signal has m 
partials we obtain a square mxm matrix with all the information 
of distances between different trajectories, with zeros in its main 
diagonal (obviously).  

The objective now is how to interpret this information to 
separate the partials corresponding to each source. The problem 
is that a priori we do not know the number of sources, and we 
only know the distance between partials, but not if a certain par-
tial is part of a source or it is shared. Hence it is not easy to ob-
tain a mapping where different partials from the same source 
(whose distance between pairs tends to zero) appear close each 
other. It is necessary to divide the partials into as many different 
families or categories as sources, having a minimum error be-
tween members of a class [8]. For signals with non-overlapping 
spectra, it is: 
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where S1, S2... are sets of partials and |S1,2| is the cardinality 
of each set. S=S1US2 is the whole set of founded partials and 
S1∩S2=ø. 

The ideal solution would be to calculate all the possible per-
mutations of Equation (9), and to choose the best one. But the 
number of possibilities to evaluate is too high, so we need a dif-
ferent approach. 

A good first approach to the final solution uses the following 
hypothesis: The set of partials related to the same source must 
have approximately the same onset (and less important, offset) 
time.  Different events [13] can create onsets in the audio signal. 
In our case, the instantaneous envelope of each partial contains 
the information about the onset and offset times. Before the first 
onset and after the offset, the amplitude is negligible. Between 
the onset and the offset times, the instantaneous envelope can 
vary in quite different shapes. In the same Figure 3, the three de-
picted partials are part of the same source, in this case the flute 
note.  The amplitudes are dissimilar, but note that the onset and 
offset times remain quite close. Figure 4 shows the envelopes of 
the four most important partials of the (isolated) clarinet note. 
Although the shape of the envelopes can vary, the onset and off-
set times are similar. 

We used a simple onset detection algorithm based on a more 
complex version presented in [14].  
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Figure 4: Temporal evolution of the amplitude (no nor-
malized) of the first four partials of the isolated clarinet 
signal. 

The onset detection tries to distinguish partials from different 
sources, assuming that a single instrument only produces a single 
event at a certain time instant.  Unfortunately, neither the offset 
nor the onset time, are constant even for a single isolated musical 
instrument. For example in Figure 1, observe how the partials 
related to one of the sources (in this case, the sax signal) does not 
start exactly at the same time (the onset time increases with the 
median frequency of the partial). A similar situation is founded 
looking at the offset time. However, the partials of the guitar pre-
sent clearly marked onset and offset times. So onsets and offsets 
are somehow signal-dependent information. It is not possible 
then to use only these two parameters to separate the different 
sources. However, they can be used to find a set of preliminary 
candidates for the different sources involved in the mix. We only 
need two or three partials from each source to develop a statisti-
cal search of the other partials related to the same source. The 
greater the energy of the partial, the better it defines the envelope 
and specially the instantaneous frequency evolution of its related 
source. The algorithm evaluates the onset and offset times of 
each partial, ranked accorded to energy, creating families of par-
tials with similar characteristics. Each family is considered as a 
source. Then, taking the most energetic partials, we can evaluate 
the distances between each one and the rest of the partials of the 
signal through Equations (6), (7) and (8). In a last step, partials 
not included as part of any source can be proportionally divided 
in as much parts as sources, according for example to the mean 
distance to each family of partials.  

Taking the upper and lower scales (or frequencies) that char-
acterize each one of the m partials of a given source, sk, we ob-
tain a 2D mask for the source that can be used to synthesize the 
source directly from the wavelet coefficients, using: 
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where the operator .* must be interpreted as in Matlab®, and ai,k 
are the scales related to the ith partial of the kth source. 

3.1. Limitations 

The limitations of this technique result evident, and they will be 
detailed in the next Section. As a brief resume, we can found two 
main limitations. One of them is inherent to the analysis itself, 
the other is related with the analyzed signal.  
As explained in Section 2, a partial is synthesized through the 
summation of complex wavelet coefficients inside the bands re-
lated to a certain peak in the scalogram of the signal. As the sca-
logram is calculated using the information of the whole signal, 
every partial has the same duration of the signal, independently 
of the real duration of the sound (see for example Figure 4). This 
makes that sources of shorter duration tend to carry some infor-
mation of the longer duration sources that becomes more evident 
when the main sound decays.  

On the other hand, if the separated signals present overlap-
ping spectra, some partials are shared by different sources. In 
such a case, the separation process can fail.  

4. EXPERIMENTAL RESULTS 

The algorithm was tested with a set of four synthetically mixed 
signals from a short database of real musical instruments, chosen 
in order to obtain the limitations of this technique. Results are 
shown in Figures 5 to 8. In these figures five different wave-
forms are depicted: The first and the second are the original (iso-
lated) signals. The third and the fourth are the separated sources, 
and the last waveform is the error signal, obtained as the tempo-
ral subtraction of one of the original signals and its related 
source. These figures should be considered a figure of merit of 
the results. 

 

Figure 5: Experimental results for the signal composed 
by the mixture of a flute and a clarinet. 

The first separation corresponds to the clarinet and the flute 
mix. It presents one of the limitations of the technique, intro-
duced in Sections 2 and 3.1. In Figure 2 we presented the indi-
vidual scalograms of these two signals. Observe that the second 
partial (in amplitude) of the clarinet (scalogram plotted in dotted 
line) is situated approximately in the same bands (frequencies) as 
the second partial of the flute. That means that these partials will 
merge into a single one, whose separation will be impossible, 
using the same filter bank. Results of the separation are shown in 
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Figure 5. Observe that the algorithm considered the merged par-
tial as part of the flute note. This single partial represents ap-
proximately 40% of the energy of the clarinet note, as can be 
checked looking at the values of the first and third waveforms of 
the figure. This error results audible, and becomes more evident 
in the resynthesized flute signal.  

 

Figure 6: Experimental results for the signal composed 
by the mixture of a flute and a sax. 

 

Figure 7: Experimental results for the signal composed 
by the mixture of a guitar and a sax. 

As we explained briefly in Section 2, the bandpass filter bank 
that we generate is of constant Q. It means that in low frequency, 
filters are narrow while their bandwidth grows with frequency. 
So, partials in the high frequency are more difficult to separate as 
we can see in the flute and sax mix. Figure 6 shows the graphical 
results. In this signal, some high frequency shared partials were 
assigned to the flute, revealing one of the limitations of this tech-
nique. The final separation presents a clearly defined error signal 
and an audible high frequency sax distortion in the separated 
flute. Some possible solutions to this problem will be presented 
in Section 5. 

 

Figure 8: Experimental results for the signal composed 
by the mixture of a clarinet and a guitar. 

In Figures 7 and 8, we show the results for the guitar-sax sig-
nal and the clarinet-guitar signal, respectively. In both signals, 
the separation process works almost perfectly. Only a little high 
energy information was not properly separated. The acoustic dif-
ference between the original signals and the separated sources is 
almost indistinguishable.  

5. CONCLUSIONS 

In this work a new technique of BASS of monaural signals is 
presented. The signal is analyzed through a complex band pass 
filter bank that comes from the CCWT.  

The purposed method evaluates a distance between compo-
nents of the mix signal. To make a first distinction of the number 
of present sources and some candidates to be components of a 
given source, we used an algorithm of onset and offset detection.  

This technique has one main limitation: the sources have not 
to evolve similarly. That is, onset and/or offset times must be 
different. A musical piece with several instruments playing syn-
chronously will be not properly separated. 

The overlapping spectra of the signals, is another source of 
error. It can be smoothed using an appropriate (and application 
dependent) filter bank structure. 

This algorithm is in an early stage. We are working in sev-
eral lines, trying to develop a more complete separation tech-
nique. A first line of work combines a partial tracking algorithm, 
and a third distance term in Equation (8), related with the har-
monic distance between partials. The onset detection is then not 
necessary, assuming that a single instrument can play a single 
note at a certain time (that is, polyphonic instruments are not 
compatible with this new separation technique). 

On the other hand, we need to obtain standard numerical re-
sults of the quality separation process, in order to compare the 
proposed technique with previous works. It is also necessary to 
test the accuracy of the separation process using monaural not 
synthetic mixed signals. The necessity of non overlapping spec-
tra of the involved sources is an important (and hard to solve) 
limitation of this task. 
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