
Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

POWERWAVE - A HIGH PERFORMANCE SINGLE CHIP INTERPOLATING WAVETABLE
SYNTHESIZER

Robert Trausmuth

Dept. of Computer Engineering
University of Applied Science

Wiener Neustadt, Austria
trausmuth@fhwn.ac.at

Antti Huovilainen

Laboratory of Acoustics
and Audio Signal Processing

Helsinki University of Technology, Finland
ajhuovil@acoustics.hut.fi

ABSTRACT

In this paper we introduce the single chip implementation
of a 16 voices wavetable synthesizer. All digital functions
(control and waveform generation) are contained in a sin-
gle platform FPGA chip (Xilinx Virtex 2 Pro). Only the
digital to analog conversion is done by a standard 96 kHz
audio DAC (AD 1785). In the first version the synthesizer
is controlled via standard RS 232 interface.

1. INTRODUCTION

During the last years the boundaries between hardware and
software have become distorted. The technology of FPGAs
gives an embedded systems engineer the possibility of de-
signing a full system in one chip. Only the first level drivers
for electrical interfaces have to be implemented in discrete
electronics. One of the real challenges in modern embed-
ded system design is to find the best solution for dividing
the implementation of components in hardware and soft-
ware. Designing parts of the solution in hardware is no
longer the domain of electrical engineers. Our motivation
for this project was to create a system on chip design which
would exploit the inherent parallelism of FPGAs and also
the embedding of the slow control all in one chip. A quite
powerful DSP and a lot of glue logic would be the alterna-
tive. With this concept we reduce the chip count to FPGA +
DAC (and eventually some external memory).

Starting with the PPG Wave synthesizer [4] in mind we
tried to avoid the snapping and clicking when switching be-
tween waveforms. The way PPG Wave implemented os-
cillators was that there was a set of 64 short waveforms in
memory. Each oscillator had a wavetable position (wave-
form index) that could be changed during the course of note
and that way the spectrum could be modified. There was
no interpolation so the waveforms aliased and there was a
small click/snap whenever the wavetable position changed.

We planned to improve this by interpolating between
adjacent samples in the waveform and by interpolating be-
tween adjacent wavetable positions too to remove the snaps.
Another improvement was to use different waveform reso-
lutions depending on the frequency, so that the waveforms

µC

slow control
param calculation
pitch calculation

osc. setup

MIDI, RS232

M
em

ory
m

apped
registers

FPGA

16 voices à
4 oscillators + 1 filter

stereo output

Register sync
interrupt

24 bit
stereo DAC
@ 96 kHz

Sync
serial

AMP

Wavetable
Synthesizer

Figure 1: the overall system design

used at higher frequencies would have less harmonics and
aliasing would be reduced.

This paper shows the implementation of a 16 voice wave-
table synthesizer in one chip. The sound generation and all
the calculations of the oscillators are done in hardware, and
the slow control is handled by a microcontroller included
in the FPGA and a small C program. The standard serial
RS 232 interface has been chosen as primary interface to
control the synthesizer by an external computer program,
although it will be replaced by MIDI or even ethernet in the
next version. This will allow for live performance with an
external keyboard.

The synthesizer uses 12 wavetables which contain wave-
form data for different frequencies. The granularity of data
is adjusted to the playback frequency, so we need only 12
kB per waveform.

The work of Antti Huovilainen has been supported by
the Academy of Finland (project #104934).

293 - DAFx'05 Proceedings - 293



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

2. SYSTEM DESCRIPTION

The PowerWave synthesizer has 16 voices. Each voice is
produced by a combination of four wavetable oscillators,
which can each be controlled in waveform, amplitude and
speed (frequency). Each voice has its own digital nonlin-
ear Moog filter, and the resulting signal is then split to the
stereo channels, where all voices are combined to a master
left/right signal path. To give further possibilities in sound
engineering the main stereo path is equipped with a 6 band
parametric EQ and a variable delay feedback loop. The
system uses 96 kHz standard sampling rate to produce the
stereo audio signal with an AD 1785 DAC. A standard serial
interface is used to play the synthesizer. The control of each
oscillator and all the filters is handled by a PPC 405 CPU
which is part of the Xilinx Virtex II Pro FPGA we used
for this implementation. The control program updates the
memory mapped control registers every millisecond. We
are also working on an alternative (cheaper) design using a
Xilinx Spartan 3 FPGA and a Philips UDA1380 CODEC.

The exact timing is derived from the 96 kHz sample fre-
quency. The chip logic master clock is eight times the DAC
master clock rate (12.288 MHz, 256 times the sampling rate
of 96 kHz) and therefore is 98.304 MHz. The FPGA PPC
405 CPU runs at 300 MHz.

2.1. Data Flow Conceps

When doing a System-On-Chip design the system engineer
has the freedom to choose which parts of the solution are
done in hardware. In the case of the PowerWave synthe-
sizer all the "fast" logic for sound generation is done this
way. The oscillators read the waveform data from tables
stored in RAM and generate the desired waveforms. Wave
data is processed by filters and amplifiers coded in hardware
and sent to the audio DAC. All variables are controlled by
a microcontroller program which is executed by a PPC 405
CPU included in the FPGA. The communication between
software and hardware is done using memory mapped reg-
isters on the OPB chip internal bus. Every millisecond the
control program is interrupted by a signal from the oscillator
hardware to recalculate the parameters for all the filters, os-
cillators and voices. Communication with the artist (player
of the instrument) is done by the software included in the
chip.

2.2. Slow Control

The PowerWave slow control can be distributed into three
parts. The first process takes care of the serial interface and
implements the communication protocol. A special control
protocol is used in the first prototype implementation. The
user interface is programmed in C++ and runs on a standard
PC. The second process prepares all the parameters for the
filters and oscillators. The third process is run every mil-
lisecond to update the control registers for the hardware im-

plementation. The hardware synthesizer issues a synchro-
nous interrupt signal every 96 calculations, so the interrupt
occurs every ms and a real-time behaviour of the slow con-
trol can be achieved.

The first task encapsulates the communication protocol
so this can easily be replaced by another protocol. For the
prototype an uncomplicated ASCII-based protocol is used
as a proof of concept. In the following versions this task
will be replaced by a MIDI protocol handler. This task is
event driven and works whenever data is available on the
interface.

The second task is the main calculator of the Power-
Wave synthesizer. Since the sampling rate is fixed at 96
kHz all the coefficients for the filters and oscillators have to
be calculated here. The calculation results are converted to
signed fixed point representation suitable for the FPGA (1
+ 17 or 1 + 23 bits) and buffered for transfer to the hard-
ware section. This task is run upon request issued by the
communication task.

The third task is responsible for adjusting bit alignment
and updating the hardware registers on chip. This task is in-
terrupt driven and runs every millisecond. Since the real
synthesizer runs in hardware all the parameters reside in
dual port RAM on the chip. This way the communication is
easier for both hardware and software implementations.

The parameters include speed (= pitch), position and
amplitude values for each oscillator and one mode register
per voice. The change in speed and amplitude is done via
differential parameters delta_speed and delta_amp to mini-
mize glitching. The parameters for the Moog filter include
g and resonance (see section 2.4) as well as four gain para-
meters per filter stage for alternative responses. Two more
registers per voice are used to control the panning. The fi-
nal parametric EQ has another 18 parameters (gain, cutoff
frequency and bandwidth per filter stage). The total num-
ber of parameters is 866 and the user interface is therefore
implemented in different windows.

The playing of music on this first synthesizer prototype
is done by the control program on the PC, since an interac-
tive MIDI protocol is not available now.

2.3. Wavetable Oscillator

The wavetabe oscillator uses data tables which are orga-
nized as mip tables [5]. The tables contain interpolation
points for the sampled waveform. For low frequencies the
table contains 2048 points per period and for frequencies
near the Nyquist frequency there are only 16 samples per
period. The actual value is fitted according to the current
fraction of period. Also the frequency contribution is taken
into account: For one sample both nearest mip tables will
be evaluated and the real waveform value is fit according to
the frequency settings of the oscillator. This method grants
smooth transition to higher/lower frequencies without pro-
ducing glitches in the sound.

In this application the oscillators use fast on chip SRAM

294 - DAFx'05 Proceedings - 294



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

OSC 1

waveform[n]
speed
amp

OSC 2

waveform[n]
speed
amp

OSC 3

waveform[n]
speed
amp

OSC 4

waveform[n]
speed
amp

++
Filter

Moog Model
EQ
...

L
R

Figure 2: one voice of the synthesizer

memory. These memory blocks are organized in 16 bit
width, and since they have dual port access, two values at
a time can be read from one block.

The value for each wave sample is determined by three
fits: The ratio of the oscillator speed to the Nyquist speed
determines which mip table has to be used. The mip tables
contain sample data in ascending resolution. The most de-
tailed table contains 2048 samples per period and will be
used for frequencies below 23 Hz. The tables follow mostly
in fractions to the power of two relative to the sampling fre-
quency of 96 kHz. The table sizes are larger than dictated
by Nyquist criteria to reduce artifacts from linear interpola-
tion. The authors have found that using two to four times
longer tables with a limit on minimum and maximum table
size gives good tradeoff between quality and memory usage.
For a certain phase (= position) the signal value is deter-
mined from the nearest base mip table. The same procedure
is done for the next octave mip table. Since the oscillator
speed normally will not match a mip table frequency ex-
actly, the final value is a linear interpolation between the two
mip table values according to the real oscillator frequency.
The final value depends on the current oscillator phase and
the oscillator frequency, so this interpolation process can be
shown in a 3D plot according to figure 3.

To provide more possibilities for sound generation the
oscillators 2 and 4 can be used to manipulate the speed of
oscillators 1 and 3, respectively. If used as frequency mod-
ulators the outputs of oscillator 2 and 4 are fed back to the
frequency inputs of the other oscillators. Another possible
setting is oscillator synchronisation. In this case the slave
oscillators (1 and 3) are reset every time the master oscilla-
tors (2 and 4) wrap around. This technique can be used to
produce well known sharp synthesizer sounds.

pos

freq

val
fitted
value

mip1

mip2

Figure 3: illustration of the fitting procedure used to find
the right waveform value for given frequency and oscillator
phase

2.4. Moog filter

According to the work of Antti Huovilainen published last
year on DAFx’04 [1] each voice has its own nonlinear Moog
ladder filter. The original ladder consists of four differen-
tial pair transistor stages. each stage is modelled by a tanh
lookup table with interpolation and a normal one pole IIR
lowpass filter. the input of the following stage is the tanh of
the output of the previous one.

The Moog filter has two parameters: the cutoff fre-
quency and the resonance factor. The cutoff frequency fc
and resonance amount res are used for calculating the co-
efficients g and feedback according to the formulae

wn = 2fc/fs

corf = 1.873w
3
n + 0.496w

2
n − 0.649wn + 0.999

g = 1− e−2πwncorf

feedback = 4res(−3.936w2n + 1.841wn + 0.997)

Extending the original Moog ladder filter, the Power-
Wave implementation gives the possibility of using the out-
puts of each stage and mixing them to produce final filter
output signal. Therefore the filter has another four gain val-
ues (one for each stage output). By adjusting the mix of
invidual stages, various different responses can be obtained
[6]. To get the original Moog ladder only the last gain is set
to 1, all others are set to 0.

2.5. Output filter

The stereo output of the 16 voice generators can be filtered
again before it is sent to the DAC. For this purpose we use
a VHDL implementation of the six band EQ presented last

295 - DAFx'05 Proceedings - 295



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

Figure 4: digital implementation of the Moog filter

year on DAFx04 [2]. The filter calculation theory and sim-
ulation has been done by Franz Siegmeth [3]. The calcula-
tions are implemented in hardware and done in a few time
cycles.

The EQ uses six two-pole IIR filters with±20dB each.
Since frequency, gain and bandwidth can be adjusted dy-
namically two or more filter units can be combined to get
a sharp attenuation or amplification. The parameter calcu-
lations are done by slow control. The real time audio data
calculations are done in hardware.

3. ON CHIP RESOURCE USAGE

The XC2VP20 FPGA has enough resources to host all the
necessary system components. The PowerWave synthesizer
uses roughly half of the on chip resources. To give the
reader an overview of those resources a few numbers are
mentioned here.

Each oscillator of the PowerWave synthesizer uses 3
18x18-multiplier and 8 36 bit adder. The calculation of
one oscillator needs 15 clock cycles. This can get worse
if slower memory is used for the wavetables. One voice has
4 oscillators which gives a total of 12 multipliers and 32
adders.

The Moog filter consists of 4 stages with a total of 5 in-
terpolating tanh lookup tables (1 multiplier, 2 adders each)
and another 1 multiplier and 2 adders per stage. The feed-
back loop takes 2 multipliers and 2 adders. So the total
Moog filter uses 25 multipliers and 38 adders. The output
is split to two stereo master channels with 1 multiplier and
1 adder each.

The voices are pipelined in calculation, so we only need
the resources for one voice: 39 multipliers and 72 adders.

The EQ filter consists of 6 stages of biquad IIR blocks.
One block needs 5 multipliers and 4 adders. So the total
filter uses 30 multipliers and 24 adders. The stereo signal
has a main gain control which uses another 2 multipliers
and 2 adders.

The adders are implemented in chip logic in the re-
quired bus witdh. The multipliers are available on chip as
hardware components, so they are pretty fast but limited in
width. Our design uses 71 out of 88 multipliers availabe
on chip. The PowerPC 405 microcontroller system needs
roughly 3000 slices of logic, our design needs another 3000.
So the 9000 available slices on chip are enough to incor-
porate the whole system in one chip. Up to 500 kB of
BlockRAM (fast dual port memory on chip) can be used for
wavetables. Since this SRAM has two independend ports
the calculations of the oscillators can be accelerated by get-
ting two values in one clock cycle.

4. CONCLUSIONS

In this paper we presented a fully integrated wavetable syn-
thesizer on one chip. The implementation takes profit from
hardware / software codesign. All calculations are done di-
rectly in hardware. Only the digital to analog conversion
of the final stereo signal has to be done with an external
audio CODEC. The proof of concept implementation uses
four waveforms.

In the next version there will be more waveforms (up to
64), an additional ring modulator in the stereo output chain
and a standard MIDI interface to allow live performace with
the PowerWave synthesizer.

5. REFERENCES

[1] A. Huovilainen, Non-linear Digital Implementation
of the Moog Ladder Filter, DAFx04 Naples, 2004

[2] R. Trausmuth, M. Kollegger, ADAM - a 64 channel
general purpose realtime audio processor, DAFx04
Naples, 2004

[3] Franz Siegmeth, Realisierung eines digitalen Misch-
pultes mit DSP, diploma thesis, 2003

[4] Mark Vail, Vintage Synthesizers, Miller Freeman
Books, 1993, ISBN 0-87930-275-5

[5] Ken Greenebaum (ed), Ronen Barzel (ed), Audio
Anecdotes II: Tools, Tips, and Techniques for Digi-
tal Audio, Phil Burk, Band Limited Oscillators Us-
ing Wave Table Synthesis, pg 37-54, A K Peters Ltd,
2004, ISBN 1-56881-214-0

[6] Oberheim, XPander service manual, 1984

296 - DAFx'05 Proceedings - 296


	P_293.pdf
	POWERWAVE - A HIGH PERFORMANCE SINGLE CHIP INTERPOLATINGWAVETABLE SYNTHESIZER
	1. INTRODUCTION
	2. SYSTEM DESCRIPTION
	2.1. Data Flow Conceps
	2.2. Slow Control
	2.3. Wavetable Oscillator
	2.4. Moog filter
	2.5. Output filter

	3. ON CHIP RESOURCE USAGE
	4. CONCLUSIONS
	5. REFERENCES

	Huovilainen
	Trausmuth


