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ABSTRACT

A physically based model of the frictional interaction between dry
surfaces is presented. The paper reviews a number of static and
dynamic friction models, and discusses numerical techniques for
the accurate and efficient numerical implementation of a dynamic
elasto-plastic model. An application to the bowed string is pro-
vided, and the resulting simulations are compared to recent results
from the literature.

1. INTRODUCTION

Friction, the tangential force between two surfaces in contact, needs
to be minimized in most engineering applications, since its highly
nonlinear behavior affects the performances of the systems. The
effectiveness of model-based control strategies for friction com-
pensation is ultimately limited by the ability of the models to ac-
curately describe the dynamics of the physical system.

In an attempt to better predict friction phenomena at low ve-
locities (i.e., stick slip, pre-sliding, frictional memory, etc.) re-
searchers have recently developed dynamic models for friction.
These dynamic models describe the dependence of friction on the
relative velocity between the two sliding bodies through a differen-
tial equation. Dynamic models are able to take into account pres-
liding behavior for very small displacements, where the friction
force increases gradually with the displacement.

The first dynamic model was proposed by Dahl (see [9] for
a review): it accounts for presliding displacement, but not for the
Stribeck effect, i.e. the dip of the force at low relative velocities.
The LuGre model [5] extends Dahl’s work in order to include the
Stribeck effect. However, this model exhibits drift for arbitrarily
small external forces, which is not physically consistent. This ef-
fect has been explained in [6] by observing that LuGre does not al-
low purely elastic regime: therefore, a class of elasto-plastic mod-
els has been proposed in [6], where the drawbacks of LuGre are
overcome.

To our knowledge, the attention on frictional phenomena in
sound synthesis applications has been focused on the most com-
mon family of musical instruments whose main excitation mecha-
nism is friction, i.e. the family of bowed string instruments. The-
oretical models of the motion of a bowed string assume that the
frictional force due to the bow rosin is only dependent on the rel-
ative sliding velocity. Smith and Woodhouse [12] have observed
that the rosin exhibits plastic deformation at the bow contact point.
For this reason they proposed a plastic model in which friction has

a dependence on the temperature variations in the interfacial rosin
layer. This model exhibits a hysteresis loop in the velocity versus
force plane.

The sound synthesis algorithm described in this paper is based
on the elasto-plastic model, already used in [7] for haptic render-
ing applications. This model has already been applied to a bowed
string in [11]. However, in that application the authors chose the
same numerical implementation used in [7], which introduces one
sample delay to solve computational problems.

The model proposed in this paper is intended to provide a
general description of the non-linear friction between two resonat-
ing objects. The numerical implementation provides efficient and
accurate computation of the non-linear equation, and follows an
object-oriented approach in which the resonating objects and their
coupling are modeled in a modular way. As an application, a sim-
ulation of a string excited by a bow is developed. We show that the
elasto-plastic models predict the same qualitative behavior as the
plastic model [12].

Section 2 describes the continuous-time model, and Sec. 3 its
discretization. Section 4 discusses two real-time pd1 modules that
implement of the model, and Sec. 5 presents applications to the
bowed string and to more general friction based sound effects.

2. THE MODEL

Section 2.1 reviews the elasto-plastic friction model used in the
remainder of the paper. In Sec. 2.2, this model is applied to an
exciter-resonator system.

2.1. The friction model

The friction model we use is based on the bristle interpretation of
friction as shown in figure 1. Let’s consider two facing surfaces
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Figure 1: Bristle model.

1http://www.pure-data.org
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with bristles extending from each, as shown in figure 1. The fric-
tion between the two surfaces is assumed to be caused by a large
number of bristles, each contributing a fraction of the total friction
load. The load contributed by each bristle is proportional to the
strain of the bristle, i.e. the bristles act as linear springs. When
the strain exceeds a certain level the bond is broken. In LuGre
model [5], friction is modeled as the average deflection of the bris-
tles. When a tangential force is applied, the bristles deflect and, if
the deflection is large enough, the bristles start to slip. Denoting
by z the average bristle deflection, and by v the relative velocity
between the two surfaces, the model is given by:

_z = v �
jvj

g(v)
z ; (1)

ffr = �0z + �1 _z + f(v) ; (2)

where �0 is the stiffness of the bristles, and �1 is the bristle damp-
ing (see figure 2). The additional term f(v) accounts for the vis-
cous friction. As an example, a special case of the LuGre model
(sometimes referred to as standard parametrization [9]) assumes
linear viscous friction, and the term f(v) takes the form �2v.
Equation (1) is such that in steady state the deflection z approaches
the value

zss(v) = g(v)sgn(v) : (3)

The function zss(v) has the typical
HH

HH

shape used for inter-
action force in classic bowed string modeling [8], accounting for
the so-called Stribeck effect.

V

z

σ0

σ1

Figure 2: The LuGre model.

The physical interpretation of this model is as follows. Con-
tact surfaces are very irregular at microscopic level. We visualize
this as two rigid bodies that make contact through elastic bristles.
When a tangential force is applied, the bristles will deflect like
springs and dampers which give rise to the friction force. The av-
erage deflection of the bristles corresponds to the internal state of
the dynamic friction model z.

It has been shown that, when using the LuGre model, a drift
is always produced when arbitrarily small forces or torques are
applied. This behavior is not physically consistent, since in reality
an object remains situated in the presence of small loads. In order
to overcome this drawback, a class of elasto-plastic models has
been proposed in [6], where the following formulation is used for
the bristle displacement:

_z = fNL(v; z) = v

�
1� �(z; v)

z

zss(v)

�
; (4)

while the friction force ffr is modeled as in Eq. (2). The main
difference with the LuGre model is represented by the function

�(z; v): this is an adhesion map which controls the rate of change
of z; specifically, when the bristle displacement z is smaller than a
given breakaway displacement zba, then � is set to zero and con-
sequently equation 4 reduces to _z = v (see figure 3). This means
that in the range jzj � zba the model shows purely elastic preslid-
ing regime, and therefore does not exhibit drift. Note that LuGre
is a special case of Eq. 4 where �(z; v) � 1.

2.2. The exciter-resonator model

In what follows, we name “bow” one of the modal objects and we
use the subscript b when referring to its variables. Similarly, the
other “resonator” is indicated by the subscript “r”. The resonator
and the bow are modeled as a set of Nr and Nb second order me-
chanical oscillators respectively. The exciter and the resonator can
be made interact via the friction model of equations (4) and (2),
where linear viscous friction is assumed. The resulting system is
described by the following set of equations:8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

mbi�xbi + rbi _xbi + kbixbi = fbe � ffr;

(i = 1 : : : Nb)

mrj �xrj + rrj _xrj + krjxrj = fre + ffr;

(j = 1 : : : Nr)

v =

NbX
i=1

_xbi �

NrX
j=1

_xrj ; (relative velocity)

_z = fNL(v; z) = v

�
1� �(z; v)

z

zss(v)

�
;

ffr = �0z + �1 _z + �2v; (friction force)

(5)

where the x’s represent the modal displacements, while z is the
mean bristle displacement (see [6, 9]). The terms fbe and fre rep-
resent external forces. Explicit expressions for the functions � and
zss are available from the literature. Here we follow [5] by defin-
ing zss as

zss(v) =
sgn(v)
�0

h
fc + (fs � fc)e

�(v=vs)
2
i
; (6)

where fc; fs are the Coulomb force and the stiction force respec-
tively, while vs is the Stribeck velocity. Following [6], the function
�(z; v) is parametrized as:

�(v; z) =

8><
>:

0 jzj < zba; sgn(v) = sgn(z)
�m zba < jzj < zss(v); sgn(v) = sgn(z)
1 jzj > zss(v); sgn(v) = sgn(z)
0 sgn(v) 6= sgn(z) ;

(7)

where zba is the breakaway displacement below which the preslid-
ing is purely elastic. �m is indeed a function of v and z, which
describes the transition between elastic and plastic behavior, as

�m(v; z) =
1

2

�
1 + sin

�
�
z �

1
2
(zss(v) + zba)

zss(v)� zba

��
: (8)

Therefore, for sgn(v) =sgn(z) the general shape of the function �
is the one given in Fig. 3.

3. DISCRETE-TIME EQUATIONS

System (5) is structurally identical to the impact model presented
in [3], therefore similar numerical techniques can be applied in
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Figure 3: Plot of the function �(v; z) for sgn(v) = sgn(z).

order to discretize the continuous-time model. The equations for
the modal objects are discretized with the bilinear transformation,
and in the discrete-time domain the two objects appear as two filter
banks of second-order bandpass filters, each one accounting for
one specific mode of the objects.

By applying the bilinear transformation to the first equation in
system (5), the resonator is represented by the discrete-time equa-
tions

8>>>>><
>>>>>:

xrl(n) = Arlxrl(n� 1) + brl[f(n) + f(n� 1)];

(for l = 1 : : : Nr);

xr(n)
4

=
PN

l=1
xrl(n);

f(n) = fre(n) + ffr(n);

(9)

where the vectors xrl are defined as xrl =

�
xrl

_xrl

�
, and f is

the total force acting on the resonator. Similar equations, with
matrices Abl and vectors bbl (for l = 1 : : : Nb) are found for the
bow. We refer to [2] for detailed definitions of these matrices and
vectors.

The bristle equation of dynamics _z = fNL(v; z) is also dis-
cretized using the bilinear transformation, with time quantum Ts.
Since this is a first order equation, discretization by the trapezoid
rule is straightforward:

z(n) � z(n� 1) +
Ts

2
y(n� 1)| {z }+

Ts

2
y(n)

4

= ~z(n) + k(2)y(n)

(10)

where y
4

= fNL(v; z) = v

h
1� �(z; v) z

zss(v)

i
and k(2)

4

= Ts
2

.

While ~z(n) is a computable quantity (i.e., it is a linear combina-
tions of known variables), the coefficient k(2) isolates the depen-
dence of z(n) upon the force y at the current time instant n.

We still need to express the relative velocity v as the sum of its
computable part and the contribution of the term y(n) (similarly
to (10)). This is less straightforward, since the friction force itself
depends explicitly upon v. From the third of (5), exploiting (9),

recalling (10), and defining b
4

=
hPNb

i=1
bbi(2) +

PNr

j=1
brj(2)

i
,

we obtain

v(n) =
1

1 + �2b

(
NbX
i=1

�
_~xbi(n) + bbi(2)[fbe(n)� �0~z(n)]

	
�

�

NrX
j=1

�
_~xrj(n) + brj(2)[fre(n) + �0~z(n)]

	)
�

�
b

1 + �2b

�
�0

Ts

2
+ �1

�
y(n) =

4

= ~v(n) + k(1)y(n):

(11)

3.1. The Newton-Raphson algorithm

Equations (10) and (11) show that when the two modal objects are
coupled through the non-linear friction interaction, the resulting
system exhibits computational problems in that a delay-free path
is generated in the computation: namely, the relative velocity v(n)
and the bristle displacement z(n) depend on the term y(n), which
in turn depends on the pair (v(n); z(n)).

The last equation of the discrete-time system provides the non-
linear term y as

y(n) = fNL (~v(n) + k(1)y(n); ~z(n) + k(2)y(n)) : (12)

In order to find the current value y(n), the implicit equation (12)
must be solved. As shown by Borin et al. [4], an efficient solu-
tion is provided by the K-method. As in [3], the nonlinear function
fNL(n) is computed iteratively using the Newton-Raphson algo-
rithm: early results suggest that the number of iterations remains
smaller than seven for typical parameter configurations. Thus, the
final algorithm can be written as:

for n = 1 : : : samplelength�
~xbi(n)
_~xbi(n)

�
(8i), and

�
~xrj(n)
_~xrj(n)

�
(8j)

~z(n) and ~v(n)
y(n) with Newton-Raphson
v(n) as v(n) = ~v(n) + k(1)y(n)
z(n) as z(n) = ~z(n) + k(2)y(n)
ffr(n) as ffr(n) = �0z(n) + �1y(n) + �2v(n)�
xbi(n)
_xbi(n)

�
=

�
~xbi(n)
_~xbi(n)

�
+ bbi[fbe(n)� ffr(n)] (8i),�

xrj(n)
_xrj(n)

�
=

�
~xrj(n)
_~xrj(n)

�
+ brj [fre(n) + ffr(n)] (8j)

end

As far as the Newton-Raphson method is concerned, at each
time step n the value of y(n) is computed by finding a local zero of
the function g(y) = [fNL(~v(n)+k(1)y(n); ~z(n)+k(2)y(n))�
y] in this way:
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y0 = y(n� 1)
k = 1
while (err < Errmax)

g(yk) = fNL (~v(n) + k(1)yk; ~z(n) + k(2)yk)� yk

yk+1 = yk �
g(yk)

g0(yk)

err = abs(yk+1 � yk)
k = k + 1

end
y(n) = yk

Thus, the derivative g
0(y) has to be computed. This is done in

successive steps as a composite derivative [2].

4. IMPLEMENTATION

4.1. Modal friction

We have implemented a pd plugin, structurally based on the model
of impact interaction between modal objects described in [10]. In-
deed, the friction interaction plugin is distributed together with the
impact interaction models as part of the interaction modal
package, downloadable from the Sounding Object web site 2.

When opening the interaction modal folder, one finds a
few subdirectories that reflect the modular structure of the plugins:

resonators: contains the implementation of resonators des-
cribed as a bank of modal mechanical oscillators, each dis-
cretized with the bilinear transformation. External forces
can be applied at specified interaction points, each point be-
ing described by a set of numbers that weight each mode at
that point. Displacement or velocity are returned as outputs
from the modal object.

interactors: for friction interaction, a function computes the
forces to be applied to two interacting resonators. To do
that, it uses the “free-developed” resonator velocities ~v and
bristle displacement ~z, and it computes the k matrix using
parameters of the modal objects.

sound modules: contains a subdirectory for each plugin im-
plemented, where the structures and functions required by
pd are provided. Here, the external appearance (default
parameter values, inlets and outlets) of the plugin is also
defined.

Figure 4 displays the friction 2modalb (“2” stands for
two modal objects, and “b” stands for bilinear transformation) plu-
gin inserted in a pd patch. In the top-right corner, sliders control
the parameters of the second modal object (resonator). Here, the
sliders labeled lev* control the effectiveness of interaction of the
exciter with each of the resonator modes. In fact, in the imple-
mentation chosen for modal resonators there is no explicit control
on vibrating masses, but these “gains” allow to adjust the relative
weight between exciter and resonator, thus affecting the k matrix
in a predictable way.

4.2. Waveguide friction

It is interesting to examine how the elasto-plastic friction model
behaves in the well-studied context of bow-string interaction. To

2http://www.soundobject.org

Figure 4: pd patch for elasto-plastic friction interaction between
two modal objects.

experiment with that, we developed a pd plugin called kviolin,
where a waveguide string model is substituted to the modal res-
onator. It can be easily seen that the structure of the discrete-time
equations remains the same when using a waveguide resonator,
only the explicit expression for the K-matrix needs to be changed.

The model runs in real-time with moderate system require-
ments, and it allows to dynamically reach several oscillation re-
gimes. As any violin player knows, a joint balanced control of bow
pressure and velocity is crucial to achieve the desired oscillation
quality, and the temporal development of these control curves is
also crucial. It is almost impossible to achieve a satisfactory sound
evolution using only sliders to control the parameters. Therefore,
we used Damien Henry’s xgui3 to design a control panel (see fig-
ure 5), where a 2D pad allows simultaneous control of bow pres-
sure and velocity. The plugin and example patches are available
from the SOb project web site4.

Figure 5: Fragment of a pd patch for elasto-plastic string bowing.
The main parameters are accessible via a control panel designed
using xgui.

3http://dh7.free.fr
4http://www.soundobject.org
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5. APPLICATIONS

5.1. The bowed string

In the past, theoretical modeling of the motion of a bowed string
has assumed that the frictional force due to the rosin on the bow
was determined only by the relative speed between the bow and
the string.

However, recent results [12] have demonstrated that this is not
the case. Experiments show that the relative velocity versus fric-
tion force curve exhibits a hysteresis loop. This loop suggests the
need for a different friction model. In [12] a model is proposed
where the friction force depends on variations of temperature at
the rosin layer between the two bodies in contact. The authors
called this model plastic, since it accounts for plastic deforma-
tions of the rosin layer according to the variations of temperature.
In this model, friction is given by:

ffr = �(T )FN � sgn(v) (13)

where FN is the normal bow force,

�(T ) is a temperature dependent friction coefficient as described
in [12], and v is as before the relative velocity between the bow
and the string.

Figure 6 shows the results of applying this model to the simu-
lation of a cello D string, tuned to 147 Hz, with a Q factor of 500
and a stiffness coefficient B = 0:0003 N m2. The simulations of
the string were performed using a waveguide model. As in typical
implementations, losses at the extremities were lumped into low-
pass filters, in order to obtain the desired Q factor. The top of Fig.
6 shows the snapshot of the time-domain velocity waveform at the
bow point obtained during the steady state portion of the motion,
for Vb = 0:1 m/s and FN = 1:1 N. Note how the Helmholtz
motion, i.e. the ideal motion of a bowed string, is achieved. The
bottom of Fig. 7 shows the plot of the coefficient of friction versus
velocity. For comparison, the exponentially decaying steady-state
curve is overlapped.

In order to obtain a comparison with the model proposed in
[12], we applied our model to the simulation of a string excited by
a bow, using the same waveguide cello D string as before.

In order to relate the parameters of the elasto-plastic model to
the parameters that drive a bowed string instrument, the relation-
ship between these parameters must be found.

The parameters (fc; fs) are related to the normal force FN

through the static and dynamic friction coefficients asfs = �sFN

and fc = �dFN , where in violin bows the static and dynamic co-
efficients take values �s � 0:4 : : : 0:5 and �d � 0:2, respectively
(see [1]).

The breakaway displacement zba is also influenced by the nor-
mal force: note that in order for �(v; z) to be well defined, the
inequality zba < zss(v)8v must hold (this remark is made also in
[6]). Since minv zss(v) = fc=�0, a suitable choice for zba is

zba = cfc=�0 = c�dFN=�0; with c < 1; (14)

which says that the breakaway displacement increases with the
normal force, as one would expect.

The remaining parameters are taken from the literature. Note
that �0 defines the compliance of the dynamic model (for �0 !1

the bristles do not move anymore) or, equivalently, the magnitude
of the allowed presliding displacement, while �1 describes the in-
ternal dissipation of vibrating bristles.

0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22
−1.5

−1

−0.5

0

0.5

Time (s)

V
el

oc
ity

 (
m

/s
)

−1 −0.5 0
0.2

0.7

1.2

Relative velocity (m/s)

F
ric

tio
n 

co
ef

fic
ie

nt

Figure 6: Top: velocity at the bow point for a cello D string (147
Hz) bowed with Vb = 0:1 m/s and FN = 1:1 N. Bottom: coeffi-
cient of friction versus velocity. Both plots are generated using the
model proposed in [12]. Courtesy of Jim Woodhouse. For compar-
ison, the exponentially decaying curve displayed in the plot shows
the steady-state friction curve used in [12]. Note how, as the au-
thors show, no part of the hysteretical curve follows the steady
state curve.

Analogously to Fig. 6, Fig. 7 shows the results of applying the
elasto-plastic model to the simulation of a cello D string. The top
plot provides a snapshot of the time-domain velocity waveform
at the bow point obtained during the steady state portion of the
motion: it can be seen that Helmholtz motion is achieved. The
bottom plot shows the coefficient of friction versus velocity.

Note how the behavior of the two models is qualitatively sim-
ilar. Both models show a friction curve with an hysteretical be-
havior. The differences on the shape of the friction curve are due
to the fact that the approach of the two models is completely dif-
ferent. Indeed, while the first model is purely based on the ther-
modynamical properties of rosin, the model that we use is purely
mechanical.

One advantage of using a purely mechanical model is that it
can be easily generalized to other rubbed surfaces in contact, as
described in section 5.2. From a perceptual point of view, however,
the behavior of the two models is strongly similar.

5.2. Friction based sound effects

The bowed string examined in the previous example is the most
common instrument driven by friction. However, friction driven
oscillations appear in all systems in which rubbed dry surfaces are
in contact, such as squeaking doors and chalks. It is interesting to
notice that the same friction model used for the bowed string can
be applied, with adjustments to the parameters both for the exciter
and the resonator, to all these other situations.

This allows the possibility of creating interesting sonorities
both from a musical and a sound-effects producer viewpoint. Once
the parameters are tuned, in fact, the models can be used to repro-
duce many sonic effects that appear in our world.

Our modal synthesis framework is general enough to allow a
cartoon reproduction of many friction-based sonorities. However,
when looking for accurate reproduction of friction phenomena one
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Figure 7: Top: velocity at the bow point for a cello D string (147
Hz) bowed with Vb = 0:1 m/s and Feb = 1:1 N. Bottom: velocity
versus coefficient of friction.

should bear in mind that “There are many different mechanisms.
To construct a general friction model from physical first principles
is simply not possible” [9].

6. CONCLUSIONS

In this paper we have proposed a sound synthesis algorithm for
audio rendering of frictional interactions between rubbed surfaces,
based on elasto-plastic friction models. The numerical implemen-
tation has been discussed, and it has been shown that the discretiza-
tion strategy here proposed allows real-time implementation.

An application to the specific case of the bowed string has been
given. In this situation, the model exhibits hysteretical behavior,
which has been measured on real instruments by Smith and Wood-
house. However, further studies are needed in order to develop a
more rigorous comparison between the elasto-plastic model and
the plastic model developed by Smith and Woodhouse.

The flexibility of our model allows us to apply it to different
situations in which frictional interactions exist. Due to the large
number of control parameters, controlling the sound module is not
a trivial task. Therefore, future work shall concentrate on find-
ing effective control strategies and effective mappings between the
parameters that are available from typical human-computer inter-
faces (e.g., pointing devices or pen-based input devices) and the
physical parameters of the model.
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5http://www.soundobject.org
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sky. A new model for control of systems with friction. IEEE
Trans. Autom. Control, 40(3):419–425, 1995.

[6] P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter. Sin-
gle State Elasto-Plastic Friction Models. IEEE Trans. Autom.
Control, 47(5):787–792, may 2002.

[7] V. Hayward and B. Armstrong. A new computational model
of friction applied to haptic rendering. In P. Corke and
J. Trevelyan, editors, Experimental Robotics VI, pages 403–
412. Springer-Verlag, 2000.

[8] M. E. McIntyre, R. T. Schumacher, and J. Woodhouse. On
the oscillations of musical instruments. J. Acoust. Soc. Am.,
74(5):1325–1345, 1983.
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