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ABSTRACT

In this paper an application of the Mellin transform to the digital
audio effects will be presented. Namely, low-pass and band-pass
like filtering in the Mellin domain will be described and used for
obtaining some kind of pizzicato effect on audio samples (musical
instruments, but not only). The pluck and damp effects will be
obtained using filtering in Mellin domain only. The algorithm used
for implementing the Mellin (scale) transform has been presented
in DAFx’04 [1].

1. INTRODUCTION

The effect showed in this paper is entirely based on filtering in the
Mellin (scale) domain. The Mellin transform is the mathematical
tool that allows to pass from time domain to the so called Mellin
domain. The scale transform, a restriction of the Mellin transform,
introduced by Cohen [2]], can represent a signal in terms of scale.
The scale can be interpreted, similarly to frequency, as a physical
attribute of signals [2]. Thus, we can conceive digital audio effects
that work by handling the signal in the scale domain, with trans-
formation of the magnitude and/or phase of the scale image. This
is technically feasible as long as fast and accurate realizations of
these transforms are available.

The effect presented aims at simulating a pizzicato on a generic
audio sample. So, for example, a flute can be “pizzicated” for ob-
taining some kind of plucked string instrument with spectral char-
acteristic of the flute sample. This effect can be realized using two
filters in the scale domain. The first filter dynamically cuts the
frequencies (from the higher to the lower) as time increases, and
the second filter simulates a pluck at the beginning of the sample.
Both the filtering processes are realized in the scale domain, the
first is a low-pass filter and the second is a band-scale enhancer.

It’s important to emphasize the fact that this is an experiment
in exotic domains (Mellin, scale) and the first objective is the ex-
ploration of these domains. So this paper doesn’t want to introduce
the best way to do this kind of effects, but an alternative to classical
Fourier approaches.

In section 2] an introduction to Mellin and scale domains will
be given with a description of the Fast Mellin Transform (FMT). In
section[3.I|the scale magnitude low-pass, high-pass and band-pass
filtering will be discussed and their behavior will be described. In
sections[3.2]a description on how to obtain damp and pluck effects
will be given and a discussion about a more classic implementation
of the effect will be introduced in section[3.3] Finally, in section 4]
experiments and results will be described and shown, and a com-
parison with a real pizzicato will be described.

2. MELLIN AND SCALE TRANSFORMS

The Mellin transform of a function f is defined as:
M;y(p) = / fyetat, (1)
0

where p € C is the Mellin parameter. The scale transform [2] is
a particular restriction of the Mellin transform on the vertical line
p=—jc+ %, with ¢ € R. Thus, the scale transform is defined as:

1 o i1
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The scale inverse transform is given by

1 o e 1
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The key property of the scale transform is the scale invariance.
This means that if f is a function and g is a scaled version of f,
the transform magnitude of both functions is the same. A scale
modification is a compression or expansion of the time axis of the
original function that preserves signal energy. Thus, a function
g(t) can be obtained with a scale modification from a function
F(t),if g(t) = Vaf(at), with o € RT. When o < 1 we get a
scale expansion, when o > 1 we get a scale compression. Given
a scale modification with parameter «, the scale transforms of the
original and scaled signals are related by

Dy(c) = o’*Dy(c). S

This property derives from a similar property of the Mellin trans-
form. In fact, if h(t) = f(«t), then

Mh(p) = o™ " My(p). ®

In both @) and (§), scaling is reflected by a multiplicative factor
for the transforms, and for (@) such factor reduces to a phase dif-
ference. So, the scale transform magnitudes of the original signal
and the scaled signal are the same.

|Dg(c)| = [Dy(e)]- (6)

2.1. The Scale Interpretation

A parallel can be drawn between the properties of the Fourier and
scale transforms. In particular, we can define a scale periodicity
as follows: a function f(t) is said to be scale periodic with period
T if it satisfies f(t) = VT f(tT ), where T = b/a, with a and
b starting and ending point of the scale period. Cy = 27/In T is
the “fundamental scale” associated with the periodic function. By
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analogy with the Fourier theory, we can define a “scale series” and
Parseval theorem [3]].

For this work it is important to introduce an interpretation of
the scale transform based on the scale decomposition of a signal.
Like for the Fourier theory in which we can see signals like infinite
sums of sines and cosines, for the scale theory we can interpret a
signal as an infinite sum of time and frequency damped periodic
functions (figure [I). So instead of sines and cosine we have the
following functionsﬂ

ddsin(t) = w ()
ddcos(t) = cos(cInt) (8)

\/z )
where c is the scale.

So, the components of a signal at low scales are functions
(all components start from time values grater then zero, and are
damped in time by the coefficient t_%) in which their frequencies
go rapidly near low values (heavy damped in frequency as time
increases). This fact will be used for explaining the filtering in[3.2]

Original Signal
50
[}
3 Component 1
%_ 0
IS Component 2
< P 0
50 Component 3

0.02

Time [s] 0.03 15 Scale

Figure 1: Example of scale decomposition (Phase, energy and
other concepts are not taken into account. Energies are normal-
ized.).

2.2. Relation with the Fourier transform

From its definition and interpretation, the Mellin transform pro-
vides a tight correspondence with the Fourier transform. More
precisely, the Mellin transform with the parameter p = —jc can be
interpreted as a logarithmic-time Fourier transform. Similarly, we
can define the scale transform of a function f(t) using the Fourier
transform of a function g(t), with g(¢) obtained from f(¢) by time-
warping f and multiplying the result by an exponential function.
This result can be generalized for any p defined as p = —jc + 3,
with 8 € R. So, if g(t) = ¢'” f(e") with 3 = 1 then:

D[f(®)] = Flg(*)], ©

'Due to our purposes of magnitude filtering, the phase is not taken into
account.

where F'[-] and D[] refer to the Fourier transform and scale trans-
form, respectively.

2.3. A Fast Mellin Transform

Practical modifications of signals in the Mellin domain can be
achieved only if an accurate and fast discrete realization of the
Mellin transform is available. We have realized] a Fast Mellin
Transform (FMT [1]) by exploiting the analogy between the Mellin
and Fourier transforms (section[2.2)), as a sequence of exponential
time-warping, multiplication by an exponential, and Fast Fourier
Transform, as represented in figure [2} So the algorithm performs

I f(t) I x(n)

Exponential Spline Interpolation and
Time Warping Exponential Resampling
Exponential Point-by-Point

Multiplication Exponential Multiplication

A
Fourier FFT Algorithm
Transform ’
Mt(c) Mx(c)

Figure 2: Implementation of the Fast Mellin Transform: theory
(left) and practice (right).

an exponential resampling using a spline interpolator (cardinal or
natural cubic [4]) for achieving the exponential time warping re-
quired, a point by point multiplication with an exponential func-
tion and a FFT (Fast Fourier Transform). The asymptotic com-
plexity of the algorithm is O(n In?n), where n is the number of
samples.

3. THE PIZZICATO EFFECT AND FILTERING IN
SCALE DOMAIN

When a string (for example a guitar string [5]) is plucked we hear
a sound. If analyzed from a time-frequency point of view (us-
ing a spectrogram for example) this signal presents a damping in
time and in frequency. The signal looses energy (due to air resis-
tance, losses at string termination, internal losses in the material
due to viscoelastic losses, etc.), but the losses are not uniformly
distributed in the spectrum. The attenuation works first (from a
temporal point of view) on high frequencies and then on low fre-
quencies.

This behavior can be simulated using filtering in Mellin (scale)
domain. In the next sections we will explain how.

2The MATLAB code is available on |http:/profs.sci.univr.it/~desena/
FMT/
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3.1. Filtering in Scale Domain

In this section low-pass, high-pass and band-pass filters in scale
domain will be introduced. Other types of filtering in scale domain
can be found in [1] and a sample with water drops filtered usin
the scale transform has been submitted to the Freesound Projeclﬁ

The low-pass filter can be performed by multiplying the trans-
form magnitude by a window (like filtering in Fourier domain).
The simplest window could be a rectangular window, that sets to
zero all magnitude components that are found between a cutoff
scale and the the signal maximum scale. Observing the results (the
original signal spectrogram can be seen in figure[3] top), we can in-
terpret this filter like a time-varying low-pass filter. The cutoff fre-
quency approaches zero (hyperbolically, cf. [6]) as time increases
and, at the same time, the amplitude of the signal is damped (see
figure[d top). The speed of frequencies cutting and the amplitude
damping depend on the cutoff scale.

The high-pass filter behaves symmetrically, gradually moving
the cutoff frequency toward zero (see figure[d] bottom).

The band-pass works in a midway, allowing to pass only cer-
tain frequencies at precise time instants. Viewing a band-pass in
a spectrogram plot one could see only frequencies between two
(time vs frequency) hyperbolic curves (see figure 3} bottom).
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Figure 3: Original signal (top) and band-pass filtered signal (bot-
tom) spectrograms.

3.2. The Damping Effect and the Plucking Effect

After the previous two sections we are now in the position to ex-
plain how the damping effect and the plucking effect have been
obtained with the scale transform.

As already introduced, when plucked, a string starts to vibrate
until the energy is dissipated. From a time and frequency view-
point we can see the frequencies components approaches zero,
with high frequencies converging faster. A similar effect can be
obtained using a scale low-pass filter. So, the scale transform can
be used to mimic the natural damping effect of a string. The ef-
fect can be driven using three parameters: the damping velocity
(how fast frequencies are attenuated) that can be controlled modi-
fying the bandwidth of the window (larger values meaning slower
decays); the floor value of the window that affords an attenuation

3http://freesound.iua.upf.edu/sampIesViewSingle.php'?id=1 7531
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Figure 4: Low-pass (top) and high-pass filtered signal (bottom)
spectrograms.

instead of a full cutting of out-of-band frequencies, and the win-
dow type (rectangular, Hann, etc.) that affects the way in which
the frequencies are cut or attenuated over the time.

The plucking effect has been simulated using a band-enhancer
that is like a band-pass but, instead of cutting, amplifies a range
of scale components. This band-enhancer works at very low scale
range with a very narrow band. So, only few scale components are
enhanced and their frequencies go rapidly near zero (because they
are ultra low scale components). Thus, an attack/pluck effect at the
beginning of the signal will be produced. The parameters for this
effect are similar to the previous one, but are more constrained.
In particular the bandwidth of the window must be small and the
central scale of the band-enhancer must be very small. There is
also an enhancing factor that can be tuned to obtain heavier or
softer attack/pluck effect.

3.3. A Comparison with STFT Approach

Even if the primary objective of the paper is the exploration of
scale and Mellin domains, we can make a comparison of our frame-
work with a classical Fourier approach. One way to obtain similar
effects using a more classical approach is the use of the short time
FFT/ IFFT-based analysis-synthesis scheme [[7,[8]. The STFT gives
obvious advantages from a computational viewpoint, but the fil-
tering framework is more complex. In fact using the STFT one
should build a low-pass filter sequence with the cutoff frequency
that varies with time (high in the first applied filters, and low in
the last filters). Hop size and windows types that allow a correct
re-synthesis must be taken into account. So, the entire structure
becomes bigger then the proposed one. Another advantage of the
STFT approach is that it is a more general approach that allows a
control over the “shape” of the time-frequency damping that in the
Mellin case can only be hyperbolic, but the latter can produce a
continuous variation of the frequency cut over time. This is some-
thing difficult to achieve with the STFT.

4. EXPERIMENTS AND RESULTS

The experiments have been mainly conducted on samples of mu-
sical instruments. The samples come from the University of Iowa

DAFX-97


http://freesound.iua.upf.edu/samplesViewSingle.php?id=17531

Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

(http://theremin.music.uiowa.edu/MIS.html) and from the “McGill
University Master Samp” cds (http://www.mcgill.ca/).
Other experiments can be done on non instruments samples, like
vowels for instance, to try to “pizzicate” the vowels.
All the samples are WAV files with a sampling frequency of 44.1
kHz and with a quantization of 16 bit. A normalization has been
performed after processing.
Let us introduce some definitions for general readers. The term
pizzicato means an audio event similar to the sound produced by
a string plucked (sounded) by fingers or a plectrum. Percussive
sound indicates a sound similar to the hit of a body on a surface.
On the contrary of the previous definition this sound does not in-
volve a string instrument. Finally, vibrato means a tremulous or
pulsating effect produced by minute and rapid variations in pitch.
In figure 5] a bowed cello sample has been processed using a
low-pass window with minimum value set to zero. This implies
that the scale components after the scale-cutoff value are deleted
and not simply attenuated. The spectrogram shows the hyperbolic
decay in time of the frequencies, emulating the damp effect. The
attack/pluck effect is not clearly visible in the graphical represen-
tation, but can be seen in the time domain. The obtained sam-
ple sounds different from a true pizzicato cello string, but, from
a perceptual point of view, the effect resembles a true string like
behavior.
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Figure 5: Cello sample. Original sample (top) and filtered (bot-
tom).

In figure[6]a flute sample has been processed using a low-pass
window with minimum value set to a value greater then zero. The
spectrogram shows the hyperbolic decay in time of the frequen-
cies, but, since the filter makes an heavy attenuation and not a full
cut, the harmonics are still present and visible. This sound is per-
ceived more as percussive rather then “pizzicato”.

The third example (figure[7) is again a flute sample, but played
with a vibrato effect, processed with a low-pass window with min-
imum value set to a value greater then zero. The same considera-
tions of the previous example can be done. In this case more har-
monics can be seen along their “wave” motion due to the vibrato.

In figure [8] a comparison between a true pizzicato and a syn-
thetic pizzicato is shown. The two signals sound different. The
synthetic hold all the effects bound to the original sound, like the
bow and string interaction that does not exist in the true pizzicato.
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Figure 6: Flute sample. Original sample (top) and filtered (bot-
tom).
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Figure 7: Flute sample played with vibrato effect. Original sample
(top) and filtered (bottom,).

The spectrogram shows that the actual pizzicato does not have a
perfect hyperbolic decay in the time-frequency plane, even though
a hyperbolic envelope can be traced over it.

All the examples shown that the artificial nature of the “Mellin
pizzicato” can be immediately recognized if compared to a real
pizzicato, especially with the help of time-frequency analysis. Is
rather obvious that the real pizzicato decays in a more complex
way. However, the artificial pizzicato gives the listener a strong
sensation of pizzicato (or percussive sound). Other experiments
have been done but are not presented in this paper, like an applica-
tion of the pizzicator to vowels, thus producing an effect similar to
plucking a string in the vocal tract.

5. CONCLUSIONS

The results obtained in this paper show how digital audio effects
can be built in the Mellin/scale domain. In particular, this work
shows how to simulate a “pizzicato” effect using only the scale
domain. The results are satisfactory, in fact the artificial pizzicato
gives to the listener an heavy sensation of pizzicato (or percussive
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Figure 8: Synthetic pizzicato (top) compared to real pizzicato (bot-
tom). The idealized hyperbolic envelope of cutoff frequencies is
drawn in dashed line.

sound). A simple low-pass coupled with a band-enhancer in scale
domain have been used to generate this effects. The entire process
needs only few parameters that can be chosen with respect to the
kind of damping and attack to simulate. Again, the first aim of
this experiment is the exploration of the scale domain, in particu-
lar how to work using scale instead of more classical approaches,
thinking at the scale like a physical attribute of the signal, inter-
preted like a joint time-frequency dimension.
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