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ABSTRACT

In many audio applications an appropriate spectral estimation from
a signal sequence is required. A common approach for this task is
the linear prediction [1] where the signal spectrum is modelled by
an all-pole (purely recursive) IIR (infinite impulse response) filter.
Linear prediction is commonly used for coding of audio signals
leading to linear predictive coding (LPC). But also some audio
effects can be created using the spectral estimation of LPC.

In this paper we consider the use of LPC in a real-time system.
We investigate several methods of calculating the prediction coef-
ficients to have an almost fixed workload each sample. We present
modifications of the autocorrelation method and of the Burg al-
gorithm for a sample-based calculation of the filter coefficients as
alternative for the gradient adaptive lattice (GAL) method. We
discuss the obtained prediction gain when using these methods re-
garding the required complexity each sample. The desired con-
stant workload leads to a fast update of the spectral model which
is of great benefit for both coding and audio effects.

1. INTRODUCTION

In LPC the current input sample is approximated by a linear
combination of past samples of the input signal. The prediction of

is computed using an FIR filter by

(1)

where is the prediction order and are the prediction coeffi-
cients. With the -transform of the prediction filter

(2)

the difference between the original input signal and its pre-
diction is evaluated in the -domain by

(3)

The difference signal is called residual or prediction error
and its calculation is depicted in Figure 1(a). Here the feed for-
ward prediction is considered where the prediction is calculated in
forward direction from the input signal.

Using the excitation as input to the all-pole filter

(4)

Figure 1: LPC structure with feed forward prediction. (a)
Analysis, (b) Synthesis.

produces the output signal

(5)

where can be realized with the FIR filter in a feedback
loop as shown in Figure 1(b). If the residual calculated in
the analysis stage is fed directly into the synthesis filter, the input
signal will be ideally recovered.

The IIR filter is termed synthesis filter or LPC filter and
it models – except for a gain factor – the input signal . For
speech coding this filter models the time-varying vocal tract. The
filter for calculating the residual from the input
signal (see Eq. (3)) is called the inverse filter.

With optimal filter coefficients, the residual energy is mini-
mized. This can be exploited for efficient coding of the input signal
where the quantized residual is used as excita-
tion to the LPC filter.

Other applications for linear prediction are audio effects such
as the cross-synthesis of two sounds or the pitch shifting of one
sound with formant preservation [2, 3, 4, 5].

In this paper, modifications of two commonly used linear pre-
diction methods (autocorrelation method, Burg algorithm) are pre-
sented to get methods which are suited for real-time computation,
i.e. to get a similar workload each sample. Furthermore the qua-
lity of the spectral model computed by different linear prediction
methods is compared regarding the required computation time.
We consider here linear prediction methods for a computation of
the residual with zero delay. Thus, the prediction coefficients are
computed from past samples of the input signal and the methods
are suited for audio coding using the ADPCM structure where no
transmission of the filter coefficients is required. The fast filter
update coming from the similar workload each sample leads to
better spectral models than block-based approaches where the co-
efficients are held constant for the duration of one block. With a
fast update of the spectral model no interpolation of the filter coef-
ficients between frames is required as usually performed in audio
effects based on a frame-by-frame LPC analysis [3, 4].
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2. CALCULATION OF THE PREDICTION ERROR

Regarding to Equations (1) and (3), the prediction error can be
calculated by a standard FIR structure which requires the direct
FIR coefficients . Some methods for calculating the prediction
coefficients are based on the lattice structure [6], as shown in Fig-
ure 2. In the lattice structure the signals and are used
which are the forward and backward prediction errors of an -th
order predictor. Forward prediction means the prediction from past
samples while in backward prediction a sample is predicted from
future samples.

Figure 2: Lattice structure.

In the lattice methods the lattice or PARCOR (partial correla-
tion) coefficients are calculated instead of the direct FIR coef-
ficients. Although it is possible to calculate the direct coefficients
from the lattice ones, sometimes it is useful to perform the filter
operation in the lattice structure. The main advantage of the lat-
tice coefficients is that the stability of the LPC filter is guaranteed
for . Furthermore, if a predictor of order is already
known, for a predictor of order only the coefficient has to be
calculated. For the direct FIR coefficients normally the complete
coefficient set has to be changed in this case.

In case of using the lattice structure, the lattice states
have to be recalculated if the lattice coefficients are changed.
This problem does not occur in the direct FIR structure since the
filter states are equal to past samples of the input signal and they
are independent of the used coefficient set.

3. LINEAR PREDICTION METHODS

In this section we describe some methods to calculate the predic-
tion coefficients for minimizing the residual energy. First the stan-
dard block-based approaches of the Burg Algorithm [6, 7] and the
autocorrelation method [1, 7] are summarized. Then the sample-
based gradient adaptive lattice (GAL) method [7, 8] is described.
Finally we present modifications of the block-based methods for a
sample-based calculation in a real-time system.

3.1. Burg Algorithm

The Burg algorithm is based on the lattice structure and it mini-
mizes for a predictor of order in a block of length the sum
of the energies of the forward prediction error and of the
backward prediction error .

The initialization of the forward and backward prediction er-
rors of order zero for the considered block is obtained by

(6)

(7)

where denotes the time index in the considered block. For
the following operations are performed:

Calculation of the -th lattice coefficient

(8)

Recursively calculation of the forward and backward pre-
diction errors of order (see Figure 2)

(9)

(10)

3.2. Autocorrelation Method

The autocorrelation method minimizes the prediction error ,
or in terms of the lattice structure, the forward prediction error.
For a block of length an approximation of the autocorrelation
sequence is calculated by

(11)

where is a windowed version of the considered
block , . Normally a Hamming window is
used [9]. For a predictor of order the filter coefficients for

are obtained by solving the normal equations

(12)

An efficient solution of the normal equations is performed by
the Levinson-Durbin recursion [1]. First the energy of the pre-
dictor of order zero is initialized to . Afterwards the
following operations are performed for , where
denotes the -th coefficient of an -th order predictor.

(13)

(14)

(15)

(16)

3.3. Gradient Adaptive Lattice (GAL)

As in the block-based Burg algorithm, in the gradient adaptive lat-
tice method the lattice coefficients are used and the sum of the for-
ward and backward prediction errors is minimized [7, 8]. Using
the approximation of the error energy of the -th order predictor

(17)

yields with the steepest decent approach the coefficient update

(18)
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with the gradient weights . Applying the recursions after Equa-
tions (9) and (10) for the current time index leads to

(19)

Thus putting (19) into (18) gives a formula for a sample-by-sample
update of the lattice coefficients.

The simplest approach is to choose the values constant.
Simulations have shown that the optimum value of (equal for all
orders for simplicity) depends highly on the used signals, the opti-
mum value varies approximately in the range from 1 to 10. Better
results are expected for gradient weights which are adaptively de-
pendent on the expectation value of the sum of the forward and
backward prediction error energies. An approximation of this ex-
pectation value can be recursively calculated by [7]

(20)
where influences the weight of older samples. The
gradient weights are obtained by

(21)

with a constant value which is normally chosen to
for a recursive formulation of the Burg algorithm [7]. In our
simulations using different sounds the optimum value was

independent of the used sound.

3.4. Modification of Block-based Methods for Real-Time Com-
putation

Both the autocorrelation method and the Burg algorithm require
first an initialization process before the prediction coefficients are
computed recursively. The real-time computation of a coefficient
set of order is spread over samples; one sample for the
initialization and one sample each for the coefficients. Thus,
with the counter (changing every sample)
we get the following procedure:

For perform the initialization.

For calculate the coefficient with index .

3.4.1. Successive Burg Algorithm

In the initialization process ( ) the operations of Equations (6)
and (7) are performed for setting both the forward and backward
prediction error of order zero to the input samples in the con-
sidered block. For one coefficient is calculated
according to Equation (8), and applying the recursions of order

after Equations (9) and (10), the forward and backward
prediction errors of -th order are computed which are required in
the following sample for computing . The new replaces the
previously used . Since one coefficient is changed, a recalcula-
tion of the lattice states prior to the filter operation is required.

3.4.2. Successive Autocorrelation Method

In the Levinson-Durbin recursion the autocorrelation sequence
for is required, see Equation (11). In the ini-

tialization process ( ) first the input data block is windowed,
where normally a Hamming window is used; then is com-
puted. For the value is computed followed by the

Durbin recursion of order as given in Equations (13) to
(16). Thus, the calculation of the complete set of the direct FIR
coefficients of order requires samples. If the stan-
dard FIR structure is used, the use of the coefficients in the filter
operation has to be delayed by samples.

3.5. DSP Workload of the Sample-Based Methods

The required instructions per sample on the Motorola DSP 56307
(DSP=Digital Signal Processor) for the described sample-based
methods including the filter operations are summarized in Table 1.
For the GAL (with adaptive gradient weights) only an estimation is
given since it is not implemented yet on the DSP. Furthermore, the
required update of the lattice states is only estimated to be of the
order of , as in the Burg algorithm. If not using the states up-
date, during the GAL coefficient update the prediction error using
the states corresponding to the old coefficient set is calculated.

Method Computation DSP instructions

suc. FIR
autoc. coeff calc. ( )

coeff calc. ( )
suc. lattice + states update
Burg coeff calc. ( )

coeff calc. ( )
GAL lattice states update

coeff calc. + std. lattice

Table 1: Required DSP instructions per sample for real-
time prediction methods and filter operations dependent on
block length and prediction order .

Table 2 shows the maximum workloads per sample for calcu-
lating the filter coefficients, i.e. the filter operations to calculate the
prediction are not considered. In the GAL the prediction order
has the greatest influence on the complexity. In this method for
each sample divisions are required which are very expensive on
a DSP. Notice that in the Burg algorithm the maximum workload
is only influenced by the block length which is also the case in
the autocorrelation method for long blocks.

Method DSP instructions

suc. autocorrelation
suc. Burg

GAL

Table 2: Maximum workload per sample for coefficient cal-
culation.

4. SIMULATION RESULTS

In this section we present some simulation results to compare the
performance of the sample-based linear prediction methods re-
garding the required DSP workload. For the simulations we use
two short sequences from a piano and a triangle sound, respec-
tively. The duration is approximately 0.8 seconds each and the
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sequences are taken from tracks 39 and 32 of the EBU CD [10].
The following parameters are used:

Successive autocorrelation method:
with ;

with

Successive Burg algorithm:
with ;

with ;
with

GAL with :

For each parameter set the prediction error is calculated by
using the described algorithms. Afterwards the segmental predic-
tion gain (seg ) is calculated which is the average value of the
prediction gains of small blocks of 100 samples duration. The pre-
diction gain of a length block is computed by

dB (22)

The prediction gain is a measure for the quality of the spectral
model. The inverse values of the averaged spectral flatness mea-
sures are appr. 53 dB for the piano and 23 dB for the triangle,
which are upper bounds for the achievable prediction gains [11].
Figure 3 shows the obtained seg values dependent on the ma-
ximum DSP workload per sample given in Table 2. For the block-
based methods the plots show lines for constant values of the pre-
diction order . In the plots for the Burg algorithm (on the right)
additionally the results of the GAL (dashed) are shown.
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Figure 3: Segmental prediction gain over maximum DSP
instructions per sample for sample-based LP methods; lines
with constant pred. order for the block-based methods.

From these results it can be seen that the performance of the
methods depend highly on the input signals. It is not possible to
say in general which method gives a better prediction gain for a
fixed DSP workload. The GAL and Burg methods perform better
for the piano sequence while the Burg algorithm does not work
satisfying at very small block lengths for the triangle sequence
(seg in some cases). The prediction gain decreases for an

increasing prediction order in case of using the Burg algorithm at
short blocks. It seems that the GAL performs for a given prediction
order like the Burg algorithm with a long block length. For the tri-
angle sequence none of the methods is able to reach the maximum
prediction gain with the used parameters. Notice that in these re-
sults the complexity for the filter operations is not included which
is much higher for the lattice-based Burg and GAL methods.

5. MUSICAL APPLICATIONS OF LPC

LPC has been very active in the very early years of computer mu-
sic, technically as well as musically. Some publications regarding
to LPC based audio effects and musical applications are those from
Dodge [5], Lansky [4], and Moorer [3]. Impressive pieces of mu-
sic have been achieved at a time where real-time was only a dream.

Nowadays some powerful software implementations of musi-
cal processing offer LPC as a way to modify, transform, mutate,
hybridize sounds. Csound is a classical one and it has functions
to perform LPC filter operations. SoundSculpt follows its earlier
version, named SVP, with a cross-synthesis between two sounds
using LPC.

First the general structure used to produce LPC based audio ef-
fects is presented and then some special applications are described.

5.1. General Approach

Producing a sound is mainly based on the LPC analysis/synthesis
structure of Figure 1. As mentioned at the beginning, if using the
residual coming out of the analysis stage as excitation to the syn-
thesis filter, the original sound is recovered. Now either the excita-
tion or the synthesis filter or both of them are changed to generate
a sound different from the input. Figure 4 shows the LPC synthe-
sis with excitation and synthesis filter . The subscript

indicates ”synthesis”. The excitation may be a processed
version of the residual or a sound not related to the signal which
is used for processing the spectral model. As explained in the fol-
lowing, a gain factor is required for the amplitude control of
the synthesized sound .

Figure 4: LPC synthesis structure for audio effects.

5.1.1. Estimation of the Gain Factor

Using as excitation the residual computed by the inverse filter
operation

(23)

will result exactly in the input signal . Thus if changing the
excitation, the gain factor is used to scale the amplitude of
the used excitation in that way that the excitation’s energy is
similar to the energy of the residual . This can be done recur-
sively to have a permanent update of the gain factor. The energies
of the residual and of the excitation can be calculated recursively
(see Figure 5) by the first order IIR filter

(24)

(25)
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Figure 5: Recursive calculation of the signal energy.

This works similar as the error energy calculation in the adap-
tive gradient lattice, see Equation (20). Now the gain factor may
be computed by

(26)

But this expression gives sometimes very rapidly changing values.
To smooth the gain factor it can be calculated recursively as well
by

otherwise
(27)

Experiments have shown that a value of gives sa-
tisfactory results. For greater values of more weight is given to
the energy of past samples which results in slower varying esti-
mates. The parameter is comparable to a block length if a block
of samples is used to estimate the signal energy. Since the residual
is assumed to be spectrally flat, the gain factor has to be chosen
smaller than given in Eq. (27) if the excitation has other
spectral properties to avoid clipping of the output signal.

Moorer [3] reported a scaling of the output signal by using
the energies of the original signal and of the output signal where a
piecewise linear gain factor is used.

Figure 6 shows some time plots for clarifying the behaviour
of the gain factor. From top to bottom are shown the input signal
(used to determine the LPC model), the energies of the residual
and of the excitation, and the gain factor. The signal for
calculating the synthesis filter is the speech utterance ”sun”, the
excitation is a guitar sound. It can clearly be seen from
the energy of the residual that in the unvoiced part at the
beginning of the sequence the predictor does not work very well.
The gain factor adapts to the changing energies of residual and
excitation. In Figure 7 the spectra of the speech input and the
calculated LPC filters for an filter order are shown at times

s and s, respectively. This figure demonstrates well the
offset by the gain factor between the original and the LPC model
spectra.

5.1.2. Audio Effects based on Speech Models

Many reported LPC based audio effects are using a synthesis fil-
ter calculated from a speech input signal [3, 4, 5]. The LPC filter
represents the time-varying properties of the vocal tract by mo-
delling its formant frequencies. For a proper vocal tract model the
prediction order should be slightly higher than the sampling rate in
kHz [4] which is equivalent to modelling one resonance frequency
each kHz since each resonance frequency requires two conjugate
complex poles. Zeros in the spectral model may be approximated
by a small number of poles [9]. Thus for a good model the predic-
tion order should be a small amount higher than the sampling rate
in kHz.
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Figure 6: Energies and gain factor for cross-synthesis.
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Figure 7: Power spectra of original and LPC filter with
an prediction order of , unvoiced (left) and voiced
(right).

5.2. Changing the Filter or the Excitation Using one Sound

In this section we explain some effects based on the LPC of one
sound. Thus the standard LPC analysis/synthesis is used, but mo-
difications are applied either to the excitation or to the synthesis
filter or to both of them.

5.2.1. Modelling the Excitation

The excitation for ideal signal recovery can be modelled as a sig-
nal consisting of pulses plus noise, as used in the speech produc-
tion model [1]. For voiced sounds the periodicity of the pulses
determine the pitch of the sound while for unvoiced sounds the ex-
citation is noise-like. The modelling of the excitation requires an
algorithm for voiced/unvoiced separation, which can crudely be a
switch between pulses and random noise. Such decisions are not
so easy to make automatically and a good pitch detector should be
used. But then all manipulations are possible.

5.2.2. Frequency Warping

The synthesis filter can be modified by taking a warped version of
the initial filter which moves the formants and will
give a ”donald duck” voice without altering its pitch. In [12] the
frequency warping is performed by using the allpass function

with (28)
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5.2.3. Time Scaling

The time duration on a sound can be modified by time-stretching
the excitation and updating the synthesis filter at a different rate
[4]. This preserves the formant structure. If the time duration is
expanded even for a sample-based update of the filter an interpo-
lation of the coefficients may be required.

5.2.4. Pitch Shifting

To modify the pitch of the resulting signal, for voiced parts the
pitch of the modelled excitation can be changed. This effect can
also be combined with the frequency warping to independently
change the formants induced by the synthesis filter. It is also pos-
sible to apply chorus or flanging or whatever effect over the ideal
excitation before it is fed into the synthesis filter.

5.3. Cross-Synthesis between two Sounds

A very classical algorithm is to use two different sounds ( and
) and take the residual of one ( ) as the excitation to the LPC

filter of the other ( ). The main structure is shown in Figure 8.
This effect is very reminiscent of the ”vocoder effect” that comes
from professional vocoder (channel vocoder) or phase vocoder.
The synthesis filter is computed from signal by using LPC
analysis with a high filter order for representing the harmonic struc-
ture of this sound. To compute the excitation an LPC inverse fil-
tering with a low prediction order is performed to whiten the input

. As reported by Moorer [3] an order of 4 to 6 works well for
this whitening process. The cross-synthesis gives good results if a
speech signal is used to compute the synthesis filter which results
for example in the ”talking guitar”.

Figure 8: Cross-synthesis structure.

For musical satisfactory results the two used sounds have to
be synchronized. Thus, for the case of mixing speech and music,
the played instrument must fit to the rhythm of the syllables of the
speech. The performance is improved if either speech or music is
coming from a prerecorded source and the other sound is produced
to match to the recording [3].

5.3.1. Using Spectrally flat Signals as Excitation

If a sound is spectrally almost flat, this sound can be used directly
as excitation, thus using in Figure 8. For example
the sound of the ocean (or another noise-like unpitched signal) can
be used as excitation. This effect is very different from the prece-
ding ones because now it is the pitch of the sound which is
given to the resulting sound if the prediction order for the spectral
model of is high enough to capture its harmonic structure. This
effect can also work for some music signals like the sound of a
distorted guitar, but the pitch structure is then a mixture of the two
pitches. In this case the resulting sound will have some loss of
high frequencies.

5.3.2. Using Synthetic Excitations

The excitation may also be processed directly without any mo-
delling. For example a signal like a sawtooth with the desired pitch
frequency can be used which sounds like a vocoder.

6. CONCLUSIONS

We presented algorithms for the sample-based calculation of linear
prediction (LP) coefficients. Apart from the well-known gradient
adaptive lattice (GAL) we presented modifications of the com-
monly used block-based approaches like autocorrelation method
and Burg algorithm. The performance of the considered methods
depends highly on the input signal. The lattice-based methods
GAL and Burg algorithm have the disadvantage that in the lattice
filter structure an update of the filter states is required for every
coefficient change. An improvement on the lattice states update is
under further investigation. For the GAL a modification may be
developed which reduces the very high complexity.

Apart from possible coding applications (e.g. ADPCM with
low delay) the sample-by-sample update of the spectral model is
beneficial in LP-based audio effects. Some audio effects have been
described including a suggestion for an efficient way to calculate
the permanently changing gain factor required in the realization of
the effects.
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