
Matlab Implementation of Reverberation Algorithms.

Fernando A. Beltrán†, José R. Beltrán†, Nicolas Holzem††, Adrian Gogu†††.

†Department of Electronic Engineering and Communications. University of Zaragoza (Spain)
beltran@posta.unizar.es, http://www.unizar.es

††Faculté des Sciences Appliquées. Université Libre de Bruxelles (Belgium). matlab_reverb@usa.net
†††Dpt. of Basis of Electronics. Technical University of Cluj-Napoca (Romania). agogu@bel.utcluj.ro

Abstract

In this paper, we present the implementation of different reverberation algorithms in the Matlab programming
environment. This is a useful tool to analyze the algorithms behavior from the signal processing and sounding
point of view. With Matlab environment is possible and simple to view the filter characteristics, impulse
response, phase response and all the relevant characteristics of the filters. In addition, the possibility of hearing
the results is quite simple and fast. We present the main aspects of programming these algorithms using
Matlab and the results produced with these techniques.

1. Introduction
Reverberation is a very common and often
unnoticeable phenomenon in our lives. The
surrounding walls in a concert hall and in the
office, the walls of the buildings in the street, every
object around us reflects the sound that is
propagating through the space. Because these
reflections, what we hear is not only the
information that leaves from the sound source;
some additional components are added to the
original sound. The reflections modify the
perception of the sound, changing its loudness,
timbre and its spatial characteristics [1].
The presence of reverberation is especially
interesting in music. This effect adds life and a
sense of space. The reverberation is associated
with the architecture and acoustic of concert halls,
and this factor is critical for good sounding in
concert performances. In recorded music, there has
been a great effort in simulating this effect through
some electro-acoustic devices. Nowadays, digital
signal processing techniques are mostly used for
these purposes.
From the first Schroeder work (early 1960's) about
artificial reverberators based on discrete-time
signal processing [2][3], many implementations
have been presented in different publications.
Some of them are very relevant (Dattorro,
Gardner, and Jot) offering different approaches to
obtain a reverberation algorithm with some
specific characteristics: natural sounding, absence

of tonal coloration, high echo density, control of
the reverberation time, etc.
In this paper we will consider a typical impulse
response, associated with the reverberation effect,
where we can distinguish the early echoes and the
late reberveration tail.
This paper is divided as follows. Section 2 presents
the basis programming techniques and elementary
filters used in the reverberation algorithms. In
sections 3, 4 and 5 we describe the implementation
details of Datorro, Gardner and Jot’s algorithms,
respectively. The main conclusions are highlighted
in section 6.

2. Matlab basis programming and
elementary filters
Filtering in Matlab is a very simple task. The built-
in function filter allows us to filter a signal,
signal_in, with the transfer function of a filter H(z)
described by the numerator num and the
denominator den, to obtain a signal signal_out.
The syntax is quite simple and we can write:

signal_out=filter(num,den,signal_in) .

This function is proved to be fast and all the
variables, as every variable in Matlab, are vectors
containing the signals and the coefficients of the
numerator and the denominator.
It should be noted that this approach to the
processing of a signal is quite different to a DSP
oriented one, in which we have a data buffer and
pointers to the samples. In the direct DSP

programming, we have also a whole control over
the signal path, with the possibility of accessing
the data at the proper point.
Our first task is to rewrite the building blocks we
need to program a reverberation algorithm in the
Matlab syntax using the filter function and to
describe how to combine these blocks to obtain the
whole algorithm.

2.1 The delay

The simplest filter we have is a delay. Its transfer
function can be written as:

kzzH −=)(. (1)

So, the filter function of Matlab will need: den=1,
num[j]=0 , j=1,…,k, and num[k+1]=1.

2.2 The lowpass filter

Figure 1 shows the block diagram of a lowpass
filter. It can be seen that the transfer function is:

11

1
)(−−

−=
gz

g
zH (2)

We can write num=1-g, den[1]=1, den[2]=-g.
Lowpass filters are used to simulate air absorption.
In order to relate the gain g and the cutoff
frequency of the filter we need:

122cos2cos2

2

−

−

−

−=

s

c

s

c

f

f

f

f
g ππ (3)

where cf and sf are, respectively the cutoff

frequency and the sample rate.

DELAY

Z
-1

ΣGAIN

1-g

GAIN

g

In Out

Figure 1. Lowpass filter block diagram

2.3 The allpass filter

In figure 2 we can see the block diagram of an
allpass filter. The transfer function of this useful
filter in the reverberation algorithms can be
written as:

k

k

gz

zg
zH −

−

+
+=

1
)((4)

DELAY
Z

-k

Σ

GAIN

-g

GAIN

g

In OutΣ

Figure 2. Allpass filter block diagram.

This expression implies that: num[1]=g;
num[j]=0 , j=2,…,k; num[k+1]=1; den[1]=1;
den[j]=0 , j=2,…,k; den[k+1]=g.
With the above expressions, we can easily plot the
characteristics of the different filters, like poles
and zeros, impulse response, frequency response,
and phase frequency response, with the
corresponding Matlab functions.
In some cases is necessary to extract inner signals
from allpass filters. From figure 3 it can be seen
that:

)()(),()()(),()(zUzzSzgVzXzUzUzzV lk −− =−== , (5)

where S(z) is the desired signal. It can be shown
that its transfer function is:

k

l

gz

zXz
zS −

−

+
=

1

)(
)(. (6)

The numerator of a delay and the denominator of
an allpass filter form the last equation.

Σ
GAIN

g

GAIN

-g

X(z)

S(z)

ΣY(z)

U(z)

V(z)

z-l

DELAY

z-k

Figure 3. Extracting the signal from inner buffer

2.4 Connecting two filters in series

In order to combine two filters in series we have
two possibilities. The first one is to compute the
output of the first filter, and input this intermediate
output into the second filter. The second one is to
calculate a global transfer function for the new
structure and make a call to the function filter with
that function. The whole transfer function could be
calculated or computed in Matlab. In fact, the
transfer function of two or more filters in series is
the product of the individual transfer functions.
Therefore, we can use the Matlab function conv to
compute the polynomial product of the numerators
and the denominators of the individual transfer
functions. When the number of filters is greater
than four or five, the filter length is so long that
this approach is not recommendable. This is due to
the increasing in computing time with respect to
the time spent filtering the signal with individual
filters.

2.5 Nesting allpass filters

In figure 4 we can see the structure of a nested
system. These systems are used mainly in Gadner’s
networks. F(z) is a general transfer function in
which we have either an allpass filter alone, or an
allpass filter with some delay.
Anyway, we can construct the transfer function:

F(z)Σ

GAIN

-g

GAIN

g

In OutΣ

Figure 4. General structure of a nested system.

)()(

)()(
)(

,
)(

)(
)(

zgFzF

zFzgF
zH

zF

zF
zF

nd

nd

d

n

−
+−

=

=
(7)

The main advantage of these kinds of filters in
place of a serial connection is that there is no
repetition of the same echo pattern. Instead, the
pattern size increases, so echo density increases
too, as in real rooms.

3. Dattorro’s reverberation network
Dattorro published this topology in 1997, among
other digital audio effects [4], reporting the
following features:
- The given topology is applicable to a broad range
of signal sources.
- Five knobs control particular aspects of the
reverberated sound. However, not all of these
knobs are directly related to physical
characteristics of reverberation.
There is to consider that this topology only
produces the late reverberation tail.

3.1 Dattorro’s reverberator structure

In figure 5 we can see Datorro’s proposed network
to obtain a reverberator. The incoming sound
enters to a delay followed by a lowpass filter; then
passes through a set of four short cascaded allpass
filters. These last four elements form what
Dattorro calls the decorrelation stage, and perform
a rapid buildup of echo density. Two knobs control
this stage: input_difussion_1 and
input_difussion_2, which are actually the gains of
the two firsts and the two last all pass filters
respectively.

The signal then enters the structure called tank,
where it recirculates indefinitely, progressively
attenuated by taps of value decay. The tank is
composed of two symmetrical lines, which are
cross-coupled. Additionally to the rate of decay,
two knobs named decay_difussion_1 and
decay_difussion_2, which are the gains of the all
pass filters 5-5’, and 6-6’ respectively, allow to set
how the recirculating signal is altered.
The network produces a decorrelated all wet stereo
output, formed by the sum of signals extracted
from the tank in various places.

3.2 Implementation details

The decorrelation stage implementation is
straightforward, as it holds no feedback loop. Each
filter successively processes the signal reinjecting
the output of one filter to the next one. Tank
implementation is somehow more complex because
of the recursive structure. In figure 6 we can see a
simplified representation of the tank structure. We
can obtain the transfer function of the input node
n_in to the reference node n_ref:

)()(1

)(1

_

_
)(

21

2

zHzH

zH

refn

inn
zT

−
+

== (8)

T(z) is the largest transfer function needed to
process the input file. Obtaining n_ref from n_in
(in figure 6) is, by far, computationally the most
expensive task of the reverberator. Once obtained
n_ref, the output taps can be obtained by
successively calling to the required simple filtering
functions described in section 2. It should be noted
that the output taps are obtained inside some
allpass filters, so eq. (6) must be used. Table (1)
shows the output points taken to construct the left
and right output channels.

Node Delay Sign Node Delay Sign
n_out_4 266 + n_out_1 353 +
n_out_4 2974 + n_out_1 3627 +
n_out_5 1913 - n_out_2 1228 -
n_out_6 1996 + n_out_3 2673 +
n_out_1 1990 - n_out_4 2111 -
n_out_2 187 - n_out_5 335 -
n_out_3 1066 - n_out_6 121 -

Table 1. Left output (left), right output (right).

PREDELAY

Z
0 → −∞

LOW PASS 1

bandwidth

ALLPASS 1

Z
-142

input diffusion 1

ALLPASS 2

Z
-107

input diffusion 1

ALLPASS 4

Z
-277

input diffusion 2

ALLPASS 3

Z
-379

input diffusion 2

Σ
ALLPASS 5

Z
-672

decay diffusion 1

DELAY

Z
-4453

LOW PASS 2

damping

DECAY

decay

ALLPASS 6

Z
-1800

decay diffusion 2

Σ
ALLPASS 5’

Z
-908

decay diffusion 1

DELAY

Z
-4217

LOW PASS 2’

damping

DECAY

decay

ALLPASS 6’

Z
-2656

decay diffusion 2

DELAY

Z
-3720

DECAY

decay

DECAY

decay

DELAY

Z
-3163

n_out_1 n_out_2 n_out_3

n_out_4 n_out_5 n_out_6

Figure 5. Datorro’s reverberator network

Σ H1(z)

n_ref

Σ

n_in

H2(z)

Figure 6. Simplified tank structure.

4. Gardner’s reverberator structure
Gardner proposed in 1992 [5] a set of
reverberation algorithms, sharing a common
global structure, but with implementation
differences depending on the reverberation time.
Because these algorithms were intended for the
simulation of a virtual acoustic room, they were
categorized as small, medium and large room.

4.1 Gardner’s reverberator structure

Figure 7 shows the block diagram of the Gardner’s
reverberator for a large room (the block diagrams
for small and medium rooms are quite similar).
For natural sounding, the author recommends to
use the type small room for reverberation times
from 380 to 570ms, medium room for 580ms to
1.29s, and large room for reverberation times
larger than 1.30s.
The three reverberators are composed of a single
delay line looped on itself through a variable value
gain. The reverberation time is adjusted with this
parameter. The structure of this algorithm is based,
mainly, in allpass filters (simple and nested ones)
and delays, followed by a first order low pass filter.
The output is obtained by summing signals taken
out various points within the delay line. This
topology as Datorro’s one, only produces the late
reverberation tail.

4.2 Implementation details

Gadner’s structures are easily implemented
following the same philosophy we have presented
for Datorro’s one. A feedback loop is presented in
figure 8. The transfer function can be expressed as:

)(

)(
 where,

)()(

)(
)(

zF

zF
F(z)

zgFzF

zF
zG

d

n

nd

d =
−

= (9)

F(z)Σ

GAIN

g

In Out

ref

Figure 8. Recirculation loops.

When signal ref is obtained, we can build up the
output signal processing successively through each
filter. Echo density is poorer than the obtained
with Datorro reverberator, but computing time is
shorter.

5. Jot’s reverberation network
In 1992, Jot proposed a reverberator structure [6]
with two important properties:
- A reverberator can be designed with arbitrary
time and frequency density while simultaneously
guaranteeing absence of tonal coloration in the late
decay.
- The resulting reverberator can be specified in
terms of the desired reverberation time and
frequency response envelope.
This reverberator simulates early reflections and
late reverberation.

5.1 Jot’s reverberator structure

The basic idea for this reverberator is to combine a
set of delay lines and attenuation stages with a

unitary matrix A on the feedback loop (A*AT=1)
(see figure 9). This idea was applied by Stautner
and Puckette to obtain a four-channel reverberator
structure, which represents a generalization of

Schroeder’ parallel comb filter, but offering a
higher echo density. The absorptive losses are
implemented with a global filter (named FTJ in
figure 9).

Σ
ALLPASS 1

Z-352, g=0.3

ALLPASS 2

Z-529, g=0.3

DELAY

Z-661

S_NESTED ALLPASS

Outer Z-3826, g=0.5
Inner Z-2734, g=0.25

DELAY

Z-749

DELAY

Z-1367

DELAY

Z-176

D_NESTED ALLPASS

Outer Z-5292, g=0.5
Inner1 Z-3351, g=0.25
Inner2 Z-1323, g=0.25

LOW PASS

fc=2.6 kHz.

GAIN

gain

GAIN

0.34

GAIN

0.34

GAIN

0.34

Σ

Σ

OUTPUT

INPUT

Figure 7. Large room Gardnes’s reberverator block diagram

Jot has obtained a better reverberator using a
lossless prototype (an energy conserving system
whose impulse response is perceptually equivalent
to stationary white noise). This structure contains a
feedback delay network based on unitary matrix.

b1

b2

b3

b4

FTJ

K1

K2

K3

K4

 z-d2

 z-d3

 z-d4

C1

C2

C3

C4

co0

 A

outin

 z-d1

+

+

++

+

+

+

+

Y1(z)

X2(z)

X3(z)

X4(z)

Y2(z)

Y3(z)

Y4(z)

X1(z)

Figure 9. Jot’s reverberator structure.

5.2 Implementation details

Jot’s structure is, by far, the most difficult to be
developed using Matalb programming techniques.
The only way to program it is using for loops, that
must be avoided as much as possible.
We can make the effort to rewrite Jot’s output in a
compact expression. In this case, we need a
column vector of unidimensional Z-transform of
the signals Xi(z) and Yi(z), i=1,…,4 of figure 8.

=

=

)(

)(

)(

)(

)(and

)(

)(

)(

)(

)(

4

3

2

1

4

3

2

1

zY

zY

zY

zY

z

zX

zX

zX

zX

z YX (10)

We can define two diagonal matrices for the delays
z-di and gains ki:

z

z

z

z

 and

4

3

2

1

d-

d-

d-

-d

4

3

2

1

=

= −dzk

k

k

k

k

(11)

Therefore, the global transfer function of the
system will be:

d

d

AkzI
kz

X(z)
Y(z)

G(z)
−

−

−
== (12)

To process the signal in this way we would need a
Matlab function filter in which the input and
output signals and the numerator and the
denominator of the transfer function could be
matrices. This is not allowed and in the Image
Processing Toolbox, the only two-dimensional
filters are FIR filters, so the Matlab
implementation will be inefficient.
In order to obtain listening results, we have finally
implemented this algorithm using a for loop, in
witch the output in computed sample by sample. In
this way we can obtain the four values we need to
compute the matricial feedback loop.

6. Conclusions
In this paper we have presented the main aspects
of the Matlab implementation of some well-known
reverberation algorithms. This tool helps us to
understand the behaviour of the different blocks
(filters, delays, gains, feedback loops, etc) in which
these algorithms are based. Using this tool it is
also possible to compare the algorithms complexity
and computing time required for them.

With this mathematical environment it is simple to
modify different parameters of each algorithm, and
to obtain listening results.
As a final note there is to say that Matlab is not
well suited for long signals processing, because
computing time is too long in typical PC
platforms.

References
[1] Gardner, W.G. 1998. Chapter 3.

Reverberation Algorithms, in Kahrs, M. and
Brandenburg, K. Editors. Applications of
Digital Signal Processing to Audio and
Acoustics. Kluwer Academic Publishers.

[2] Schroeder. M. R., Logan, B. F. 1961.
Colorless Artificial Reverberation. J. Audio
Engineering Society. Vol. 9, No. 3.

[3] Schroeder. M. R. 1962. Natural Sounding
Artificial Reverberation. J. Audio
Engineering Society. Vol. 10, No. 3.

[4] Dattorro, J. 1997. Effect Design. Part 1:
Reverberator and Other Filters. Journal of
Audio Engineering Society. Vol. 45, No. 9.
Pp. 660-684.

[5] Gardner, W.G. 1992. The virtual Acoustic
Room. Master Science Thesis at the MIT.

[6] Jot, J.M. 1992. Etude et réalisation d’un
spatialisateur de sons par modèles physiques
et perceptifs. Ph.D. thesis, Telecom, Paris.

