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Abstract

In the sinusoidal analysis of sound, using the Short Time Fourier Transform (STFT), there is the

assumption that the signal is locally stationary within each FFT frame.  If, as in practice, this

assumption is violated, the spectrum becomes distorted.  Phase Distortion Analysis (PDA) was

introduced in 1995 [1] to enhance the analysis of degraded peaks, by using the distortion itself as a

source of information about the signal nonstationarity.  It was shown that the first order frequency

and amplitude modulation could be measured from the degree of phase shift close to the maximum

of the mainlobe peak.  This paper presents advances with the PDA technique, in particular a neural

network implementation that makes estimation robust to noise.  The capability to analyse

nonstationarities relaxes the restraint on keeping the FFT analysis window short and therefore

effectively improves time-frequency resolution.  This, in turn, promises greater analysis-synthesis

quality through improved identification and tracking of partials during the analysis phase.

1 Introduction

Sinusoidal analysis-synthesis of sound has its basis in

Fourier theory, which states that any periodic

waveform may be constructed by the superposition of

harmonically related sinewaves and that the

relationship between a particular waveform and the

set of sinusoids is unique.  McAulay and Quatieri are

credited with first applying this to the analysis and

resynthesis of sound [2] and their foundations persist

in today’s models such as Spectral Modelling

Synthesis (SMS) [3].

The Short Time Fourier Transform (STFT) assumes a

local approximation to true (i.e. unchanging)

periodicity.  The spectrum of each FFT frame is the

convolution between the ideal local spectrum and the

analysis window’s spectrum.  From the spectral peaks

(window function mainlobes), estimation of the

frequency, amplitude and phase of sinusoids is

straightforward.

In reality, not all sounds change slowly (and even

slowly changing sounds may contain rapidly changing

higher harmonics).  In these cases, the assumption is

violated to some extent and the spectral peaks suffer

apparent distortion that affects the amplitude and

phase shapes.

2 Phase Distortion Analysis

On the basis that the FFT spectrum contains all

information about a time domain signal, whether the

signal is stationary or not, the Phase Distortion

Analysis (PDA) method [1] was introduced to make

use of the apparent distortion, treating it as a source

of information.  Observation showed that the degree

and direction (rising or falling) of frequency and

amplitude modulation affects the phase spectrum

uniquely.  Hence the PDA method was devised to

estimate modulation parameters from measurements

of phase shift (with respect to the flat phase response

of a stationary sinewave).

Since, in practice, a sound spectrum will contain

many peaks, phase measurements are made within the

mainlobe peak, close to the maximum, where the

magnitude of the sinusoid of interest is maximal.  By

zeropadding the time domain window, it is possible to

take these measurements closer than a single

unpadded bin.  In this paper, a Hamming window is

used, of length 1023 samples and the FFT is

zeropadded to 8192 samples.  This is loosely called

8× zeropadding.  (Note that because PDA is

empirical, the actual amount of measured phase shift

is specific to the window function shape and duration

and the distance from the mainlobe maximum at

which measurements are taken, although the method

of estimation is generic.)
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The notation �N+ is used to denote the phase shift at a

positive offset of N zeropadded bins.

i.e. MAXNMAXN Φ−Φ=Φ ++ (1)

and MAXNMAXN Φ−Φ=Φ −− (2)

where � is phase, its suffix is the frequency location,

suffix MAX is the mainlobe maximum, suffix N is a

positive integer.

So far, phase distortion analysis has been defined for

first order modulation; that is, linear frequency

modulation (1FM) and/or exponential amplitude

modulation
1
 (1AM).  In this paper, the symbols delf

and dela are used to represent the degree of

modulation, measured in unpadded bins per frame

and dB per frame, respectively, where the frame is the

duration of the time domain window (actually,

rounded up to the next power of two, i.e. 1024).  See

figure 1.
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Figure 1.  a) phase shift at �1+ as delf varies (dela=0);

b) phase shift at �1+ as dela varies (delf=0).

(�1+ shown in radians.)

In [1], it was suggested that the total phase shift was

the sum of phase shifts due to 1FM and 1AM.

Further investigation over a wider range of delf and

dela have revealed that this was a good

approximation within the range ][ 1,1 +−∈delf  &

][ 1,1 +−∈dela .  However, over wider ranges, the

relationship is more complex; see figure 2.

Nevertheless, delf and dela can still each be estimated

from just two phase shift measurements.

3 Neural Network Development

For neural network implementation, training and

validation data were generated that spanned the (delf,

dela) space in regular intervals.  At each location, a

                                                          
1
 For most magnitude measurements, the decibel (dB)

scale is used.  On this logarithmic scale, 1AM appears

as linear modulation.  Hence, for simplicity, in this

paper it is referred to as first order modulation.
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Figure 2. Phase shift as a function of first order

modulation (for the example of �1+).

modulated sinusoid was generated, windowed,

zeropadded, FFT’d, phase measurements were taken

and the phase shifts were calculated as per (1) and (2)

above.

All the network configurations described are

feedforward, with one or two hidden layers and full

connectivity.  The activation function of each neuron

is a tan-sigmoid (whose output ranges between –1 and

+1).  Training was by the Levenberg-Marquardt

method of backpropagation, with phase shifts as

inputs and modulation estimates as targets/outputs.

Performance was measured as the standard deviation

of the network error (i.e. NN output minus target

value).  This is denoted ±TRAIN, ±VAL or ±TEST

depending respectively upon whether the measure is

for training data, validation data or test data.

3.1 Reproducing Established Results

with a Neural Network

Initial experiments began using a 2-input 2-output

network with a single hidden layer and training data

within the range ][ 1,1 +−∈delf  & ][ 1,1 +−∈dela .

This had the purpose of replicating the results in [1]

using a NN, in order to verify that this approach can

work and to assess its accuracy.

It quickly became apparent that the accuracy of the

NN was poor, with either delf or dela being better

approximated to the detriment of the other.  The next

set of experiments separated the outputs, creating an

independent 2-input NN for each.  This vastly

improved accuracy, suggesting that, although both

delf and dela are estimated from the same input data,

their functions are radically different.  ±TRAIN and

±VAL were reduced to the order of 0.005, using around

10 hidden layer neurons and sufficiently dense

training data.  This is probably sufficient accuracy for

most applications.  Figure 3 (overleaf) shows an

example error surface.  Hereon examples refer to delf

only, but are equally applicable to dela.
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Figure 3. An example error surface for a 2-input

neural network, trained to estimate delf.

Having achieved the first goal of replicating the

results from [1], further experiments with the 2-input

1-output configuration were done to extend the

functionality, with the following results:

• The range of the training data was increased up to

][ 4,4 +−∈delf  & ][ 5,5 +−∈dela  , with 41 and

25 data points in the ranges respectively.

Because the relationship between dela and phase

shift function is smoother (see figure 1b), less

points were required per unit.

• When using data outside the range

][ 1,1 +−∈delf  & ][ 1,1 +−∈dela  , it was

necessary to scale the target and network output

data into the range )( 1,1 +− , to match that of the

neuron activation function.  In practice, target

data was actually scaled into the range

[ ]8.0,8.0 +− , since a large input change is

required to achieve a significant output change

outside this range, making training more difficult.

3.2 Implementing Noise Resilience

It has already been demonstrated that only two phase

shift measurements are necessary in order to estimate

delf and dela to a sufficient accuracy.  However, this

is the minimal solution and is susceptible to noise in

the time domain signal, which is likely in practice.

The aim, in this section, is to make the estimator

robust in the presence of noise by making use of more

phase shift measurements, on the basis that the effects

of noise upon each phase shift measurement will be

uncorrelated and could therefore be corrected for to

some extent.

In the following experiments, training data was

contaminated with simulated Additive White

Gaussian Noise (AWGN) at various signal-to-noise

ratios (SNR), in comparison with no-noise training.

Similarly, the performance was assessed with test data

at various SNR levels including no-noise data.  SNR

was calculated as the ratio between the sinusoid

amplitude at the centre of the analysis window (equals

mean dB amplitude) and the noise amplitude.

The extra phase shift measurements were added into

the NN input list in pairs, first adding �2+ & �2–, then

�3+ & �3–, etc…  Also, a two-hidden layer network

architecture was chosen with few neurons in the first

hidden layer, in order to minimise the computational

expense.
2
  A consequence of this is that the first

hidden layer is effectively an encoding function,

whilst the remaining layers perform the mapping.

Therefore it can be considered that the encoding layer

is dealing with noise and producing reduced

redundancy data, which is then mapped as in the

previous 2-input networks.

As a first step in the transition, the network

architecture was changed and experiments were

carried out using noise-free training data (as before),

with the following results:

• Using two hidden layers (in the described

encoder layer – mapping layers architecture)

produced much better performance and used less

neurons overall, where there were the additional

phase shift inputs.

• Increasing the number of neurons in the encoder

layer from 2 to 3 improved the performance

substantially (an order of magnitude);  further

increases, however, yielded minimal improve-

ment that did not justify the additional

computational cost.

• Testing these architectures with noisy phase-shift

data produced high and erratic error values.  Tests

with 80dB and 40dB SNR produced errors that

were usually 10-100 times and 1000-10000 times

higher than noise-free tests, respectively.  This

performance varied considerably between

different training runs of the same network.

  Next, training continued with noisy training data:

• Training data was generated with simulated

AWGN at signal-to-noise ratios of 80dB, 60dB,

40dB and 20dB.  The same (delf, dela) values

were used as before.

• The introduction of noise, even at an SNR of

80dB caused a dramatic improvement in

performance and consistency between training

runs, when tested with noisy data (at SNRs of

                                                          
2
 The number of multiplications required, for applying

the network weights, is the total number of neuron-to-

neuron connections.  Separating the inputs from the

mapping layer with a very small layer dramatically

reduces the computational load.



80dB and 40dB), with virtually no degradation in

the noise-free test case; see figure 4.

• Alternative training data sets were created using

combinations of noise levels and multiple data at

each (delf, dela) pair value including, in some

cases, the ideal noise-free training data set.  These

gave no benefit at all for a considerable increase

in training time and so they were abandoned.

• Figure 4 shows that increasing the training data

noise improves the overall resilience to noise, but

at the cost of worse performance in the low-noise

and no-noise tests.  The best noise level for

training will depend largely on the desired

response for the implementation.

• For the noise-free training, there were

performance benefits in increasing the number of

phase shift inputs.  However, with the noisy data

sets, the SNR of the training data proved more

significant.  In the tests conducted, six phase shift

inputs appears to be the optimum trade-off

between accuracy and computational load (pre-

and post-training).
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Figure 4. Error resilience for various levels of noise in

training data.  (Examples of typical performance)

It was initially expected that using noisy training data

would improve noise resilience, because the network

would be trained to give greater significance to phase

shifts closer to the mainlobe maximum, where the

FFT magnitude is greater (and therefore suffers less).

In practice the result was as expected, but not for the

reason proposed.

Up to a distance of about 6 padded bins from the

mainlobe maximum, there is actually very little

relative change in magnitude, particularly for the

cases of greater nonstationarity, where the mainlobe is

wider.  Therefore, instead of the phase measure-ments

closer to the maximum being of greater quality (and

therefore more important to the network), all the

phase inputs were roughly of equal merit.

Nevertheless, the basis of the expectation appears to

have been correct.  Without noise, the neural network

had no incentive to adjust the relative weights of the

encoder layer to toward any particular goal, since it

was able to achieve a good quality mapping with any

combination of 2 or more inputs.  Therefore, the

relative contribution between inputs was arbitrary

(leading to erratic results when tested with noisy

data).  Conversely, in the noisy case, every input was

subject to noise that reduced its individual reliability,

so for overall good performance the network tended

towards relying on a roughly equal contribution

between all the inputs.  This conclusion is based upon

observations of the network weights after training,

and is to be verified with further experiments.

4 Conclusions and Future Work

This paper has established that feedforward neural

networks are suitable for implementing the PDA

mapping function to a high degree of accuracy.

Furthermore, with the aid of noisy training data and

additional phase shift inputs, a network architecture

has been found that provides noise resilience, without

requiring a large increase in network complexity or

computational load.

There are both short-term and long-term goals for

extending the research into phase distortion analysis.

In the short term, additional NN estimators can be

designed to provide correction to the frequency,

amplitude and phase estimates, which are also

degraded by nonstationarities.  Also, experiments can

be carried out to specifically train the neural networks

to be robust to the type of additive interference

caused by neighbouring sinusoids.  In the longer term,

the method might be extendable to second and higher

order modulation.
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