
SmsPerformer:

A Real-Time Synthesis Interface for SMS

Alex Loscos, Eduard Resina
Audiovisual Institute, Pompeu Fabra University

Rambla 31, 08002 Barcelona, Spain

{aloscos, eduard}@iua.upf.es http://www.iua.upf.es

Abstract

SmsPerformer is a graphical interface for the real-time SMS synthesis engine. The application

works from analyzed sounds and it has been designed to be used both as a composition and a

performance tool. The program includes programmable time-varying transformations, MIDI

control for the synthesis parameters, and performance loading and saving options.

1 Introduction

The SMS synthesis is based on the combination of

additive and subtractive synthesis [1]. The SMS

analysis output is (1) a collection a frequency and

amplitude values that represent the partials of the

sound, (2) either filter coefficients and a gain value or

spectral magnitudes and phases representing the

residual sound and (3) a set of envelopes that

represent high level attributes of the sound. From this

representation an efficient synthesis can be

implemented that offers many transformation

possibilities.

The SmsPerformer application is a continuation of the

software implementation of SMS started by a C code

program with a command line interface developed by

X. Serra and followed by a Visual C++ code with

graphical interface implemented by J. Bonada named

SmsTools [2]. SmsPerformer brings new possibilities

to the SMS synthesis with real-time transformations

and a graphical interface.

With the power of current general purpose processors

it has become feasible to have software real-time

implementations of additive synthesis and other

musical research teams are developing similar

programs [3][4][5].

2 Real-time SMS

Recent changes and optimizations to the SMS

software have led to the current real-time

implementation.

One of the changes concerns disc access. Loading the

analyzed sound file into cache memory rather than

reading it from disc speeds up frame fetching.

Interpolation between frames was one of the most

stringent processes. Without frame interpolation, just

taking the nearest, solves possible clicks in the output

device buffer when morphing or time stretching.

These problems are produced if the CPU spends more

time in computing, synthesizing a given frame and

writing it into the buffer, than the actual frame

duration.

The number of partials to synthesize is another

stringent requirement for the system to run in real-

time as is the synthesis of the residual. In the analysis

we can choose the residual of a frame to be

represented as a magnitude spectral envelope, a

complete complex spectrum, or a waveform. When

kept as a magnitude spectral envelope, or a spectrum,

the residual is deconvolved and added to the partials

in the frequency domain. Once the spectrum of the

current frame is filled, the IFFT is used to synthesize

the waveform. When keeping the residual as a

waveform, this is added in the time domain to the

already synthesized partials, which is faster, but less

flexible, than when keeping the residual in the

frequency domain.

There is another synthesis process that presents a

trade-off between computation time and flexibility.

This the high-level attributes to be transformed and

added back to the low level SMS representation [6].

More powerful and intuitive musical transformations

can be achieved by controlling the high-level

attributes at the expense of more operations to be

carried in the synthesis.

3 Real-time under Windows

SmsPerformer has been programmed under Windows

NT with Visual C++ 5.0 and using the SMS class

library.

Because of the interactivity requirement we had to use

two threads, one for the main synthesis process and

the other for the graphical interface. The main

window process creates the synthesis thread and

sends new synthesis and transformation parameters to

the thread each time a slider is scrolled.

When threading a sound application, setting priorities

is not very reliable. The system uses the base priority

level of all executable threads to determine which

thread gets the next slice of CPU time. When setting

the synthesis thread to a higher priority, we found the

slider-scroll update rate was too slow, so we had both

threads running with the same priority level.

SmsPerformer can run the synthesis and all available

transformations in parallel and in real-time in a

Pentium Processor 200 MHz, 32Mb RAM, under

Windows 98 or NT, with 40 sinusoids, waveform

residual, 85% of the system resources free. In terms

of latency, using ISA (Sound Blaster) and PCI (Aztec

and Event) sound cards we obtained transformation

response delays under 40 milliseconds. Different

framework conditions have different limitations.

3.1 Audio playback

SmsPerformer has been implemented using both

Microsoft Win32 application programming interface

low-level API and DirectX DirectSound [7][8][9].

The API option presents some tricks once you have

sent the sound data to the sound card (filling the

lpData field of the WAVEHDR structure and using

the waveOutPrepareHeader and waveOutWrite

functions) and you have to unprepare the WAVEHDR

making sure all sound data has already been written in

the Output Audio Device buffer to reuse it (using the

waveOutUnprepareHeader function).

The waveOutGetPosition function retrieves the

current playback position of the given waveform-

audio output device but it does it very inaccurately.

This forced us to work with an error margin. On the

other hand the WHDR_DONE flag of the dwFlags

field of the WAVEHDR structure is set by the device

driver to indicate that it is finished with the buffer and

is returning it to the application, but this setting

has an important delay. So in both cases we need to

increase the number of wave headers structures

(SmsPerformer uses short sound data buffers).

DirectSound provides low-latency mixing, hardware

acceleration, and direct access to the sound device. Its

circular view enables infinite streaming buffers; as the

front of the buffer is being consumed, the rear of the

buffer can be refilled [10][11].

The write cursor indicates the position at which it is

safe to write new data to the buffer. The write cursor

always leads the play cursor, typically by about 15

milliseconds worth of audio data (shown in Figure 2).

SmsPerformer implementation uses a streaming

secondary circular buffer of 16 frames, located in

Figure 1. SmsPerformer main window.

Figure 2. Secondary buffer

with current play and write

system memory. DirectSound not only has a lower

playback latency but also needs less sound buffers.

4 SmsPerformer features

SmsPerformer has many ways to control the

synthesis-transformation of the sound: the main

window sliders, a score file, a MIDI controller, or a

set of graphical envelopes.

4.1 Main window sliders

The most immediate way to use the program is

scrolling the main window sliders. You can configure

which synthesis-transformation parameter controls

each slider and set the maximum and minimum values

of the parameter slider in a dialog window.

You can also modify the sliders value by drawing

with the mouse the configuration you want the sliders

to have. This can done in the up-left panel of the main

window shown in Figure 1.

The sliders values can be modulated by a sinusoidal

signal and also by a uniform random noise. When

sinusoidal modulation is chosen you can control

amplitude and frequency of the modulation with the

sliders placed above. When noise modulation is

chosen you can only control the amplitude of the

modulation.

4.2 External MIDI controls

The application accepts MIDI messages for changing

the transformation parameters from an external MIDI

controller. In this way you can get a better physical

feeling (like playing an instrument) than using the

main window sliders. It is also possible to change

more than one parameter at a time. For this purpose

we have used a Peavey MIDI Controller PC1600

(shown in Figure 3).

The MIDI controller sends channel pitch bend

messages to the application. The status bit is used to

specify the slider that has to receive the message and

it is followed by data bytes that specify the position of

the slider between the maximum and the minimum

defined. The message is like

First byte Second byte Third byte
0xEn LSB MSB

where n is the number of slider (channel) to control, 0

for slider 1 and F for slider 16, and then data is

specified with a 14-bit number, using two 7-bit bytes,

least significant byte first [12].

Figure 3. Peavey MIDI Controller PC1600.

A dialog window helps you specify the MIDI device,

the number of data bytes of the messages, and the

update message rate. This message rate indicates how

often the sliders values are updated (pitch bend MIDI

messages between time lapses are dismissed).

4.3 MIDI files

You can save performances as MIDI files and play

already saved performances by loading them. The

MIDI file saves the value, the slider (channel) and

the time of a value change. When playing a MIDI file

you can act on it modifying some parameter values at

the time you hear the saved performance.

4.4 Score files

SmsPerformer can also read sms score files: synthesis

files (*.syn) and hybridization files (*.hyb). These

files are text files in which you can specify all sms

synthesis and transformation parameters [2].

SmsPerformer can hybridize two sounds and modify

hybridization parameters while the sound is being

played. To do so, once the two sounds have been

analyzed and saved as sms files, you need a

hybridization file in which the two sms files have

been specified. This is an example of hybridization

file:

InputSmsFile violin.sms

InputSmsHybridFile trumpet.sms

Hybridize 1

4.5 Filters and presets

There is a bank of configurable filters and presets.

Filters refer to which sliders are active and which are

not. Presets refer to the value of each slider. You can

also disactivate a slider by clicking the checkbox

above it.

There are a number of preset options but you can

create your own filters and presets and save them.

You can see the filter and preset windows in the right

upper side of the main application window (shown in

Figure 1).

4.6 Envelope

You can have a performance by defining an envelope.

This envelope is defined in a x-time axis and y-preset

axis as shown in Figure 4.

Figure 4. Envelope window.

You can define the presets you need and place them

in the time axis. The values of the sliders are

interpolated from one point to the next. You can

modify both time and preset values of an envelope

point while the sound is playing.

4.7 Play modes

The play modes in which you can work when

performing with a given envelope, or with saved

performances, are Normal, Loop and No-End.

Normal play mode plays the sound only once. If the

transformations defined, or saved, make reference to a

time outside the actual sound duration, it does not use

them.

Loop play mode loops the sound until you click stop.

This mode also loops transformations saved or

defined whatever time duration they have.

No-End play mode loops the sound but not the

transformations. So the sound is modified until the

last saved or defined transformation time and then

keeps looping maintaining the last parameters values.

Clicking stop breaks the loop.

5 Conclusions

SmsPerformer is the first application that makes use

of the real-time possibilities of the SMS software.

Despite the problems of the Windows operating

system to support real-time audio applications,

SmsPerformer has shown to be useful for music

applications. It is the first attempt of a performance

tool and as such there is room for many

improvements.

6 Acknowledgements

We would like to acknowledge the contribution to

this research of the other members of the Music

Technology Group of the Audiovisual Institute.

References

[1] X. Serra. “Musical Sound Modeling with

Sinusoids plus Noise”, in G. D. Poli, A. Picialli,

S. T. Pope, and C. Roads, editors. Musical

Signal Processing. Swets & Zeitlinger

Publishers. 1996.

[2] Music Technology Group. SMS Web site. URL:

http://www.iua.upf.es/~sms.

[3] M. Wright, D. Wessel and A. Freed. "New

Musical Control Structures from Standard

Gestural Controllers" Proceedings of the

ICMC. 1997. [Available at http://cnmat.

CNMAT.Berkeley.EDU/ICMC97/papers-html/

Tablet.html]

[4] IRCAM Sound Analysis/Synthesis Group. Web

site. URL: http://www.ircam.fr/activites/

recherche/ana-syn-e.html

[5] Bradford Enhanced Synthesis Technology

Group Web Site. URL: http://www.comp.

brad.ac.uk/research/music/simulator.html

[6] X. Serra and J. Bonada. “Sound

Transformations based on the SMS High Level

Attributes”. Proceedings of the Digital Audio

Effects Workshop. 1998.

[7] P. L. Childs. Audio Latency Analysis for

Windows-based Systems. URL:http://telephony.

cornell.edu/Latency.html, 1997.

[8] A. Freed, A. Chaudhary, and B. Davila.

“Operating Systems Latency Measurement and

Analysis for Sound Synthesis and Processing

Applications”. Proceedings of the ICMC, 1997.

[Available at http://cnmat.CNMAT.Berkeley.

EDU/ ICMC97/papers-html/Latency.html]

[8] E. Brandt and R. Dannenberg. “Low-Latency

music software using off-the-shelf operating

systems.” Proceedings of the ICMC, 1998.

[9] R. Dannenberg and M. Goto. “Latency in

Computer Audio Systems” Proceedings of the

ICMC, 1997. [Available at http://raven.

dartmouth.edu/~icma/array/spring97/articles.

html]

[10] B. Bargen and P. Donnelly. Inside DirectX.

Microsoft Press, 1998.

[11] Microsoft. DirectX Web Site. URL:

http://www.microsoft.com/directx/default.asp.

[12] P. Messik. Maximum Midi. Manning

Publications, 1998.

