
VowSynth:

A Synthesizer of Vowel Sounds

based on Additive Synthesis

Esther Guerra i Novau
Audiovisual Institute, Pompeu Fabra University

Rambla 31, 08002 Barcelona, Spain

eguerra@iua.upf.es http://www.iua.upf.es

Abstract

This article presents the design and implementation of a non real-time voice synthesizer based on

the analysis of a soprano voice singing the five spanish vowels. The analysis is based on the SMS

technique and the synthesis uses additive synthesis.

1 Introduction

The synthesis of the singing voice has been

investigated from two different fields, speech and

music, and following mainly two different models:

physical models, based on sound productions

mechanisms, and spectral models, based on sound

perception mechanisms. (For a general overview of

singing voice synthesis methods see [1]).

One of the first methods to approach singing voice

synthesis was LPC, which can be considered a

mixture of both types of models. Other early

approaches were mainly based on spectral models,

like the vocoder, FM, CHANT, or MUSSE. SPASM

can be included in physical models where the human

vocal tract is modeled as a digital waveguide.

SMS (Spectral Modeling Synthesis) [2] is also a

spectral model, and the basis for our synthesizer. A

sound is analyzed with SMS and decomposed in a set

of sinusoids and a spectral residual. The analysis

procedure detects partials by studying the time-

varying spectral characteristics of a sound and

represents them with sinusoids. These partials are

then subtracted from the original sound and the

remaining residual can be approximated as a

stochastic signal, for example, filtered white noise.

Two recent methods which also use spectral methods

are the software designed by K. Lomax [3] and

LYRICOS [4].

In our first approximation to a voice synthesizer some

restrictions have been made. On one hand, only

vowels will be synthesized; consonants present

problems that go beyond the current work. Because of

this restriction the synthesizer will not use the residual

part of the sound obtained by SMS, thus using SMS

as an additive synthesis system. On the other hand, to

also avoid some other problems, we will not deal with

vibrato, thus analyzing and synthesizing voices

without it.

Our software synthesizer has been developed under

Windows’95, using Matlab 5.2, Visual C++ 5.0 and

the library of SMS classes developed by the Music

Technology Group of the Audiovisual Institute.

Figure 1. Diagram of the analysis process.

2 Analysis

The analysis of the original sounds is divided in two

consecutive phases. In the first one, the basic SMS

technique is applied [5] and in the second one, high

level parameters are extracted from the previous

information with some utilities written for Matlab [6].

In Figure 1 a diagram of the analysis is shown.

sound file

SMS Analysis

Parameter Extraction

amps freqs residual

Mean Amp.

Mean Fundamental Freq.

Mean Spectral Shape

Attack Start

Attack End

Decay Start

Decay End

Fundamental Frequency

Norm.

Amps.

residual

Normalized freqs.

sms file

attributes

file

2.1 SMS Analysis

In the SMS technique, initially developed by Xavier

Serra [2], a sound is decomposed in deterministic and

residual parts, and both will be used in the Matlab

analysis. In the synthesis, the residual will be set aside

for simplicity and because the human voice can be

viewed as essentially a harmonic signal, where the

residual is not essential in vowels (not as much as it

would be, for example, in the flute, which has a great

deal of residual in its sound).

From the basic SMS analysis, the sinusoidal data, and

residual will be calculated and saved in a .m file,

which is simply a text file compatible with Matlab.

2.2 Matlab Analysis

From the .m file obtained, the process continues with

the extraction of high-level attributes which

characterize the sound. Utilities based on Matlab with

dll’s compiled in VC++ 5.0 and developed at the IUA

[6] have been used. This software reads the data

written in the .m file (amplitudes, frequencies and

residual) and processes it, extracting high-level

parameters. The results are:

• Mean amplitude: Average amplitude of the

steady state of the sound.

• Mean fundamental frequency: Average

fundamental frequency of the steady state of the

sound.

• Mean spectral shape: Average spectral shape of

the steady state of the sound.

• Begin and end of the attack and release.

• Normalized amplitudes.

• Normalized frequencies.

Normalized amplitudes and frequencies are stored in

a new .sms file, and the rest in an attributes file. This

work was done before the new file format for SMS

was developed, in which the attributes are also stored

in the same file.

3 Synthesis

To design this synthesizer, I started with the C++

classes developed by the Music Technology Group of

the IUA [5], modifying and adapting them to the

voice synthesizer.

The synthesizer is initialized loading a set of analyzed

sounds. Then, from a score, the user controls and

modifies the analyzed sounds, so the desired notes are

generated after the additive synthesis stage. In Figure

2 a diagram of the synthesis is shown.

3.1 Initialization

The first thing the synthesizer does is to open all the

.sms files (one for each analyzed sound) and load

them in memory as a data base of analysis data. The

current version of the synthesizer uses the 5 Spanish

vowels: a, e, i, o, u. Then, the score will select which

one is going to be used for each event. This step will

be very important when the synthesizer works in real

time [10].

Figure 2. Diagram of the synthesis process.

3.2 Control

The interface of control and communication with the

synthesizer is a text file, a score where the control

parameters are specified. This interface is quite

simple, it’s the one used with the application

developed by Bonada [5], a text file with a control

event written in every line. In parallel to this project,

a new score file format is being developed that uses a

more advanced interface [7].

The original synthesis software had a long list of

control parameters. To this list I added new

parameters that were needed for the synthesizer:

• Tempo, Meter

• STime, Sduration, Spitch, SetPitch

 SMS

synth

transformations

desnormalization

sound file

Norm.amps.

Fund.Freq.

attribs. file
'a'

Norm.amps.

Fund.Freq.

attribs. file
'e' ...

score

file

Data Base

• KeepSpectralShape (bool)

• Vowel [a,e,i,o,u]

• Articulation (bool)

• ArticulationType (1,2)

• ArticulationDuration (sg)

• DecayDuration (sg)

• Dynamics (f, m, p)

• MeanAmp (dB)

In the next section a little explanation of the more

important parameters will be done.

3.3 Using and Processing Parameters

Frame by frame denormalization and transformation

will be controlled by the score. The first parameter to

be read is Vowel, which specifies the vowel to be

synthesized [a, e, i, o, u]. Once it is identified, its

spectral shape is loaded. The denormalization of the

harmonic l in frame number k is done adding the

mean amplitude to the denormalized amplitude

(which is stored in the .sms file):

mean
Al

k
NormAmpl

k
pAm +=′)()(

where Amean is the mean amplitude of all the

harmonics in the steady state, k is the frame number

and l the harmonic number, with values among 0 and

(numharm–1), being numharm the greatest number of

harmonics.

At this moment, the sound is not vocalic yet, since all

the harmonics still have the same amplitude. To

become a concrete vowel, the spectral shape

amplitude must be applied to each harmonic in every

frame.

To obtain the denormalized frequency, an easier

process is as follows. We approximate the voice as

perfectly harmonic, thus the l-th harmonic can be

generated multiplying the 1st harmonic (fundamental

frequency) by l. So, to denormalize the frequency of

the harmonic l in frame k, the fundamental frequency

should be multiplied by k.

Figure 3. Diagram of the amplitude and

frequency denormalization in a frame.

3.3.1 Attack

In the attributes file, where there is each note’s

information, the parameter AttackStart is read, and it

shows which is the note’s starting frame (that is,

where it is the first harmonic different from zero).

When a note is to be synthesized, it is from this

frame, because if the synthesis would begin from

frame 0, there would be a silence at the beginning of

the sound that is useless, and it should be avoided.

3.3.2 Decay (or release)

A restriction in terms of note duration is made: the

synthesized note will never be longer than the

analyzed one. When a note has a concrete duration

and it is being synthesized, when the end is reached

the note must be handled in such a way that it doesn’t

finish abruptly, the right release must be applied. Our

release is a generated amplitude envelope going from

1 to 0 in the temporal domain. An exponential

amplitude envelope could be applied, but a straight

line is chosen because perceptually the difference is

minimum. DecayDuration is a parameter indicating

the duration (in seconds) of this decay. By default,

decay duration is td =0.1 sec.

Figure 4. Amplitude envelope in time

domain. Decay and articulation are

specified.

3.3.3 Articulation

Maybe this is the most delicate point in all the

process. Articulation is the transition between two

successive notes (two events), and this transition

includes amplitude, frequency and vowel change. In

the score the articulation is controlled by three

parameters: Articulation (a value of 0 implies no

articulation and 1 that there is articulation), where by

default its value is 0, ArticulationDuration denotes

how much time it must last in seconds (by default, the

value is 0.1) and ArticulationType, that may be 1 o 2,

depending on what kind of articulation we desire. A

value of 1 implies linear interpolation, in amplitudes

and in frequencies, whereas a value of 2 implies a

linear interpolation in amplitude but sinusoidal in

frequency. By default, the value is 2. The current

program only accepts the two extreme values, but

ideally it should accept any value in between, where 1

would be a legato and 2 staccato.

Norm

amp i
Transf

SShape

amp i

Mean

amp

 amp i

Transf

i+1

 freq ipitch

articulation

decaydecay

Amp (dB)

t(sg

)

The articulation also includes a spectral change. The

natural amplitude change of the articulation is not the

same for all the harmonics. For example in the release

the level of the highest harmonics drops more than

that the one of the lowest ones.

3.3.4 Mean Amplitude

MeanAmp is a parameter used to change the mean

level (in dB’s) of the sound. When a value is given to

MeanAmp, the value called mean amplitude (see

section 3.2) is changed by this new one, so if

MeanAmp is bigger than the original amplitude, the

synthesized sound will be louder than the original

one.

3.3.5 Dynamics

In music, the difference between a pp and a ff is not

only the amount of dB’s, but there are also differences

in their spectra. In a pp, the spectral tilt is steeper, that

is, when somebody sings loudly, the high harmonics

are proportionally louder that when somebody sings

softly. This effect has been studied and quantified by

Sundberg [8] and Rodet [9]. We have implemented 3

dynamic levels: f, m and p (strong, medium, soft),

each one with a spectral slope steeper than the

previous one. There is also another parameter -x- that

allows to adjust the tilt directly, useful to adjust the

dynamic level of the analyzed sound.

4 Conclusions

The initial goal of this project was to build a singing

vowel synthesizer. As the project went on, some

restrictions had to be done, in order to make it

feasible. So, there’s still some work to do, like:

• Update the SMS analysis software to last version.

• Vibrato analysis and synthesis.

• Use of loop points to make notes as long as

desired.

• Addition of residual to vowels.

• Incorporate consonants.

• Synthesis in real time, make use of the SMS

software [10].

As a conclusion, we could say that the initial aims

have been accomplished, but there’s still work to be

done. This is the first step of a project that has to go

further, but the results obtained show the validity of

this approximation to the problem.

5 Acknowledgments

I’d like to thank everybody in the Music Technology

Group of the IUA and also Joana Clotet for her voice.

References

[1] P. Cook. “Speech and Singing Synthesis Using

Physical Models: Some History and Future

Directions”. Greek Physical Modeling

Conference, 1995.

[2] X. Serra. “Musical Sound Modeling with

Sinusoids plus Noise”. C. Roads and others,

editors, Musical Signal Processing, Swets &

Zeitlinger Publishers, 1997.

[3] K. Lomax. The Analysis and Synthesis of the

Singing Voice. Ph. D. Thesis, Oxford University,

1996.

[4] M. Macon and others. “A Singing Voice

Synthesis System based on Sinusoidal

Modeling”. Proc. ICASSP, 1997. [available at

http://www.cse.ogi.edu/CSLU/publications/

abstracts/icassp97/macon.html]

[5] J. Bonada. Desenvolupament d’un Entorn Gràfic

per a l’Anàlisi, Transformació i Síntesi de Sons

Mitjançant Models Espectrals. Graduate Thesis,

ETSETB, Polytechnical University of Catalonia,

1997. [available at http://www.iua.upf.es]

[6] J. Soler. Obtenció dePparàmetres d’Alt Nivell

Aptes per a Realitzar Modificacions Musicals a

Partir d’una Tècnica d’Anàlisi de Sons Basada

en Models Espectrals. Graduate Thesis,

ETSETB, Polytechnical University of Catalonia,

1998. (to be published)

[7] X. Amatriain. “A Musical Data Definition

Language and Class Structure for a Spectral

Modeling Based Synthesizer”. Proceedings of

the Digital Audio Effects Workshop, 1998.

[8] J. Sundberg. The Science of the Singing Voice.

Debalk, IL; Northern Illinois University, 1987.

[9] X. Rodet and G. Bennett. “Synthesis of the

Singing Voice”. M. Mathews and J. Pierce,

editors, Current Directions in Computer Music

Research, Cambridge MA.: MIT Press, pp 19-44,

1989.

[10]A. Loscos and E. Resina. “SMSPerformer: a

Real-Time Synthesis Interface for SMS”.

Proceedings of the Digital Audio Effects

Workshop, 1998.

