
Dispersive and Pitch-Synchronous Processing of Sounds

Gianpaolo Evangelista  (1)
Sergio Cavaliere (2)

(1) École Polytechnique Fédérale de Lausanne, Switzerland
evangelista@na.infn.it

(2) Department of Physical Sciences, Univ. of Naples, Italy
cavaliere@na.infn.it      http://www.na.infn.it/Gener/acust/

Abstract

The aim of this paper is to present results on digital processing of sounds by means of both
dispersive delay lines and pitch-synchronous transforms in a unified framework. The background
on frequency warping is detailed and applications of this technique are pointed out with reference
to the existing literature. These include transient extraction, pitch shifting, harmonic detuning and
auditory modeling.

1  Introduction

Frequency warping is a unitary transformation [4]
that can be interesting from the point of view of
sound manipulation and synthesis. Novel
applications, some of them recently published by the
authors, make use of dispersive delay lines, i.e., delay
lines whose elements are simple all-pass filters, for
implementing frequency warping operators. Digital
delay lines have received a considerable interest in
both synthesis (digital waveguide models) and
processing (reverberation, flanging, phasing) of
sound. A particular type of dispersive delay line is
given by the Laguerre network, which leads to
orthogonal transforms offering a concerned method
of warping that preserves the signal energy in any
arbitrary frequency band. The shape of the
corresponding frequency warping function is
obtained from a one-parameter family of mappings.
The Laguerre transform may be considered as the
building block of several new representations, useful
for the synthesis, analysis and processing of sound. A
large class of sounds, such as those produced by stiff
strings, plates, etc., shows an inharmonic distribution
of the partials. As an example, the waveguide
physical model of piano tones in the low-register is
accurately described in terms of orthogonal Laguerre
sets. It can be shown that the stiff-string model is
equivalent to a flexible string model with frequency
warped output.

The authors recently defined the Pitch-Synchronous
Warped Wavelet Transform and applied it to the
separation of transients and noise from the resonant
part of quasi-harmonic sounds. Frequency warping by
means of Laguerre expansion allows for adaptation of
the pitch-synchronous comb basis set to unequally
spaced partials. Adaptation requires the optimization
of the Laguerre parameter, for which two methods are

discussed in the paper. Once the partials are framed
by the non-uniform comb scaling set, the wavelet
components represent the fluctuations at several
scales and are appreciably non-zero on transients.
With these methods we were able to resolve the piano
hammer noise from the resonant component.

Another application of frequency warping embedded
in orthogonal transforms is in critically sampled filter
banks with arbitrary band allocation. By combining a
two band quadrature mirror filter bank with Laguerre
expansions one can build a two band filter bank with
arbitrary cutoff frequency. By iterating this filter bank
one obtains wavelets whose bandwidths are no longer
constrained to be one octave. The cutoff frequencies
may be selected by choosing a set of Laguerre
parameters, e.g., by adapting the frequency bands to a
perceptual model, such as Bark scale. A procedure for
obtaining these parameters from a closed-form
relationship is provided. Some authors considered
warping a uniform filter bank for obtaining an
approximate Bark scale filter bank. In contrast, our
method consists of iteratively warping the signal and
allows for the design of a perfect reconstruction
structure that exactly meets any specification of
cutoff frequencies. Since the structure is based on
iterating a two-band filter bank, there is no need for
designing a uniform filter bank with a large number
of bands. However, the computational cost of the new
transform is higher since several chains of real first-
order all-pass filters are included in our scheme.

Frequency warping by means of Laguerre expansion
has interesting applications to sound transformations.
Among the others, we experimented with
microdetuning. By warping a signal by means of
projection on a Laguerre set with a small value for the
parameter one obtains a natural sounding approach to
pitch shifting. In piano tones tuning is due to both the
thickness of the string and tension. Frequency
warping allows for changing the stiffness parameter.



Larger amounts of warping introduce interesting
effects on harmonic signals where both phase
relationships and spacing of the partials are non-
uniformly changed, creating, for example, gong-like
sounds from simple periodic signals, such as pulse
trains. Moreover, by using the pitch-synchronous
warped wavelet transform for noise and transient
extraction, interesting examples of cross-synthesis of
different instruments may be generated.

2  Frequency Warping

Suppose that we want to modify the frequency
spectrum of a signal s(k) so that its frequency content
is displaced to other frequencies [7]:

(1)

One needs to provide a mapping Ω = θ ω( )
transforming each frequency into a new one. The
warped frequency spectrum of a discrete-time signal
s(k) is 

The warped signal is
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Warping the signal is equivalent to orthogonally
project it onto the set hn(k).

Frequency warping may be performed with the help
of arbitrary maps. However, there are criteria for
selecting the suitable map for the specific application,
some of them are listed below.

1. In order to guarantee reversibility the map should
be one-to-one and onto the interval [-π, π),
characterized by an increasing or decreasing function.
If one needs to preserve frequency ordering  one
needs the map to be increasing. The effect of altering
the frequency ordering is similar to aliasing. In
creating musical effects, however, one may be also
interested in non-invertible maps.

2. From a psychoacoustic point of view it may be
desired to equalize the warped spectrum in order to
preserve power in any frequency band, since, as a
result of warping, by stretching a given band one
increases the associated power. Equalization is fully
justified when one deals with unvoiced sounds.
However, in pseudo-periodic sounds one may desire

to preserve, as much as possible, the envelopes of the
partials. In this case a criterion could be that of
moving the partial frequency by means of frequency
warping while preserving the bandwidths of the
partials. The overall warping map must be piecewise
linear with 45° local slopes, i.e., the map is a sum of a
(non-decreasing) staircase function and the identity
(45° line) map.

3. If one wants to transform a real signal into
another real signal then the map must be an odd
function of ω.

In order to define signal representations or
transforms based on frequency warping one needs to
constrain the map to be one-to-one and onto. If the
map is odd and differentiable then
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forms a complete set of sequences, biorthogonal to
the set
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one can obtain the orthogonal and complete set
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Projection on this set obtains warping (see (1))
combined with spectrum scaling:

This form of scaling implies energy preservation. The
warped spectrum has the same energy in the
transformed frequency band [θ(B0),θ(B1)] as the
original spectrum in any arbitrary band [B0,B1]:
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A simplification is possible if the input signal is
causal: in this case only the causal part of fn(k) gives
non-zero contributions to the expansion.

A remarkable case is based on the map generated by
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the phase of the first order all-pass filter [1]:
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A(z) maps the unit disk in itself. On the unit circle
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is the associated frequency warping map, shown in
Figure 1 for several values of the parameter, whose

inverse θ ω−1 ( ) is obtained by reversing the sign of
the parameter b. One can show that (4) is the unique
one-to-one warping map generated by rational
functions. This is important in digital realizations,
where one has to implement a chain of allpass filters
in order to compute the frequency warped version of
the signal.

By introducing the orthogonalizing factor
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of the basis set are
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Figure 1. Family of warping maps
generated by allpass

The operations involved in (2), with the recurrence
(5) taken into account, are equivalent to time-
reversing the signal, filtering by the orthogonalizing
factor and evaluating at time lag 0 the iterated
convolution by the first order all-pass impulse
response, as shown in Figure 2.  The inverse
Laguerre transform structure is obtained simply by
reversing the sign of the parameter b.
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shift register
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Figure 2.  Digital structure implementing
the Laguerre transform.

Although the Laguerre transform is the unique
orthogonal frequency warping scheme that can be
exactly implemented with rational transfer functions,
there are other orthogonal warping schemes that can
be approximated by IIR or FIR filter chains. For
example the all-pass impulse response corresponding
to the mapθ ω π ω( ) sin( / )= 2 , ω π< , is well

approximated by means of a high-order FIR filter
whose coefficients are expressed in terms of Bessel
functions.

3  Applications

In order to discuss applications of the results
illustrated in the previous section to sound synthesis
and processing, we consider an example where the
role played by frequency warping is a fundamental
one. This is the case of a stiff string, such as a low-
register piano string, whose deformation is governed
by the fourth-order partial differential equation:
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The general solution of this equation is the
superposition of four terms of which only two are
oscillating and contribute to the sound. In the
frequency domain (with respect to time) one can
write:

Y x C e C ej x j x( , ) ( ) ( )( ) ( )ω ω ωα ω α ω≈ + −
1 2 .

Unlike the flexible string case, the solution is not a
sum of purely progressive and regressive waves.
Rather, if we subdivide the string into several spatial
sections, at any given time the solution at one
extreme of the section is obtained by all-pass filtering
the solution at the other extreme of the section. This
phenomenon is typical of dispersive wave
propagation in which group velocity is frequency
dependent. As a result, the partials of both the hinged
and the clamped string are not uniformly spaced in
the frequency domain. The simple waveguide model
(Karplus-Strong algorithm) needs to be modified in
order to be able to synthesize stiff-string sounds: it
must now include frequency dependent delays [10].
This can be implemented in the dispersive delay line
shown in Figure 3. It can be shown that dispersive
waveguide model is equivalent to a non-dispersive



waveguide cascaded by a frequency warping
structure. Thus, by means of frequency warping one
can bring the stiff-string structure to a simple
waveguide form, including elementary delays.
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Figure 3. Waveguide model for the
stiff string
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Figure 4. Transformation of
harmonics to non-uniformly
spaced partials.

A further result is that the dispersive piano
characteristic is well approximated by the Laguerre
warping map, for a wide range of the physical
parameters [9]. Accurate synthesis of piano can be
obtained by frequency warping a suitable pseudo-
harmonic signal. This concept can be applied to
arbitrary quasi-periodic signals, such as pulse trains,
which may be transformed to more interesting
waveforms if we detune their harmonics by means of
frequency warping, as shown in Figure 4. The pitch
of the transformed signal is not the same as the
original one. In fact the fundamental frequency is
transformed according to the warping map. For small
values of the Laguerre parameter harmonic detuning
is a marginal effect. Detuning of the fundamental
frequency is perceptually more relevant. Thus,
frequency warping may be successfully employed as
a pitch-shift algorithm for micro-detuning, say within
one half-tone. For dispersive instruments, such as
piano, pitch-shifting by frequency warping is a more
concerned method since the detuning of the
harmonics depends on pitch.

Frequency warping is important for the analysis,
since one can regularize a piano sound by making its

partials equally spaced in the frequency domain.
Once the signal is regularized, the methods of pitch-
synchronous analysis by means of  tuned comb filters
can be applied in order to separate the regular
(periodic) component from transients and noise [2, 3].
The results can be formalized in terms of the
Frequency Warped Pitch-Synchronous Wavelet
Transform [5, 6], whose basis sequences have the
frequency spectra show in Figure 5. By means of this
representation we were able to separate the noise of
the hammer from the string vibration in a piano
sound.
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Figure 5. Fourier Transform of
typical FW-PS wavelets.

Another application of frequency warping is in the
design of filter banks whose frequency bands match
certain perceptual criteria, e.g., the Bark scale [8].
This can be achieved by iteratively warping the signal
prior to feed it to a two-band quadrature-mirror filter
bank [6]. The output of the low-pass section of the
filterbank is then warped and fed to the next two-
band filter bank, and so on. At each stage the cutoff
of the corresponding frequency band can be
determined from the warping map. If Laguerre
warping is employed the parameters bk are

determined  by the following recurrence [6]:
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andω ω ω1 2> > >.... N  are the desired cutoff

frequencies. This result is formalized in terms of arbitrary
bandwidth wavelet sets.
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