
Software modules for HRTF based dynamic spatialisation

Ignacio Sánchez and Jesús Bescós
Grupo de Tratamiento de imágenes, Universidad Politécnica de Madrid

jbc@gti.upm.es, http://www.gti.ssr.upm.es

Abstract

This paper describes the object oriented design and development of software modules intended to

enhance multimedia presentations with sound sources spatialisation, and environmental effects

(reverberation), allowing dynamic reconfiguration of the input sound parameters. Implementations

have been carried out on a PC platform, on top of the Win32 API. The resulting modules (in fact

C++ classes) have later been integrated into a working application for demonstration purposes.

1 Introduction

The application of digital sound into computers has

recently exploded due to the high availability of

reasonable quality low cost equipment, mainly

promoted by the entertainment market.

In particular, the manipulation of sound in a virtual

space, a research field traditionally owned by

psychoacusticians and musicians, hidden beyond

university labs, and showed via prototypes, has just

recently arrived to end users.

In this direction, the deployment of VRML 97 [1] has

brought sound to the VRML 1.0 silent virtual worlds,

and has definitely standardised a model for 3D sound,

via the inclusion of sound nodes into the virtual

worlds. Once the model was set up, we only had to

wait for implementations. By April 1997, Intel

presented the "first all-software solution for

interactive 3D sound and effects": their Realistic

Sound Experience (3D RSX) development kit [3].

Among many other features, they provided 3D sound

spatialisation via the use of the HRTF measures

available at the MIT [3]

The work presented in this paper was motivated by

the successive implementation steps of a model

defined in the research Group to generalise real time

multimedia data flow handling [4]. As developments

were carried out previous to the arrival of the

aforementioned 3D sound technologies, the coded

libraries have been fully implemented, that is, they are

not based on any third party commercial library.

The objective was to create software modules

intended to enhance multimedia presentations with

sound sources spatialisation, and environmental

effects (reverberation). The remaining sections

describe first the design principles, execution

environment, and final implementation of such

modules, and then, a sample application developed to

test the achieved results.

2 Design and development

According to the kind of multimedia applications that

we are typically involved in, to basic object oriented

programming principles, and to the state of the art in

this researching field, the design was based on certain

well defined requirements.

In order to limit the complexity of this first approach,

accepted sound sources should consist of

omnidirectional ones, whose response is stored in

monaural PCM coded sound files, which show typical

values for the sampling rate and bits-per-sample

parameters.

Spatialisation should be based on both the low quality

and high quality generic HRTF measures available at

the MIT (also available headphone compensation

filters have been used for the testing equipment).

Depending on the source binary rate and on the

selected filters complexity, signal processing should

be performed either with a discrete temporal

convolution or via an FFT, in order to achieve real

time operation.

The design should allow for dynamic modification of

the spatialisation parameters (azimuth, elevation), and

hence real time replacement of the localisation filters

via a multithreaded scheme (in order to avoid

replacement delays and/or undesired sound artifacts).

 Data outputs should consider either PCM WAV files,

or direct playback via an MCI compliant sound card.

Of course, this second requirement clearly imposes

some limitations on the working environment.

In order to achieve greater realism, also basic

reverberation effects should be introduced.

As the final objective of these sound processing

modules is to assemble them into large specific

applications (entertainment, presentations, sound

aided physically impaired integration, etc.), the design

of the required functionality should focus on

modularity, and try to be accessible via friendly APIs.

Finally, special attention should be paid to minimise

execution times of every atomic operation, in order to

allow real time performance even when multiplexing

several independent sound sources.

2.1 Environment

The answer to a low cost and efficient processing

environment which allowed for real multithreading,

standard I/O devices (specially sound cards)

management libraries, easy access to high resolution

timing resources, and availability of efficient

programming environments, was to work over

Windows NT OS, its MCI (Media Control Interface),

and its Multimedia Extensions.

2.2 Overall description

In order to directly code the module oriented

approach adopted for the design phase, we have

implemented all modules as C++ classes. Figure 1

depicts a functional diagram of the involved modules

or classes.

The basic module, the Filtering Module consists of a

general purpose (configurable) unidimensional signals

digital filter, implemented in a CFilter class.

Two of these filter modules (one for the right channel

and another for the right one) are combined to

generate the main module, the Spatialisation Module,

represented by the CHrtf class. This module copes

with the management of the HRTF library.

Specific add-ons, intended to carry out the

reverberation processes, enlarge the previous module

to compose the Acoustic Environment Simulation

Module, represented by the CEnhancedHrtf class.

Finally, another layer, the I/O one is added to the

latter, hence conforming an independent self-

contained object, represented by the CSound_3D

class, the final interface with the application

developer.

Biblioteca

de HRTFs

Canal

derecho

ReverberationFunctions

HRTF Lib

Acoustic Environments Simulation (CEnhancedHRTF)

RightChannel

Filtering (CFilter)

Left Channel

Filtering (CFilter)

Programming Interface (Csound_3D)

File System Sound Card

Proccess

Management

DataInputInterface DataOutputInterface

Sound Source

Localisation

Data

Reverberation DataSource

Sound Source

Proccessed

Signal

ProccessedSignal

Left Channel

Spatialisation (CHrtf)

Right Channel

Figure 1. Functional diagram showing the relationship among

the implemented modules/classes

2.3 Implementation details

As specified, the filtering module configuration

parameters are the impulse response, its sample rate,

the convolution domain (either linear convolution in

the time domain via buffers and delays, or block

convolution in the frequency domain via an FFT), and

an optional scaling factor included here for efficiency

reasons). The latter could be automatically selected

(currently, this is done by the application developer)

to maximise efficiency and minimise delay,

depending on the length of the finite impulse

response. Once the filter is configured input/output

sample/block functions are available.

A particular feature of the Spatialisation Module is

that the localisation parameters (azimuth, elevation,

and distance) can be changed on-line. A parallel

thread takes the responsibility to recalculate values

for all the internal structures and filters, and then

quickly replace them, so that the normal input/output

operation is minimally disturbed (i. e., non heard),

and that the operation is not much delayed. The aim

was to allow dynamic real time spatialisation

(monaural sound source plus a defined trajectory) as

opposed to a statically processed sequence (binaural

sound source).

Data used for spatialisation comes from the work

carried out by Bill Gardner and Keith Martin at the

MIT [3]. Their measured HRTFs with an original

length of 16383 samples have been pre-processed

(reduced to 512 and 128 long impulse responses --

which correspond to two different available quality

levels--, and ordered for efficient dynamic operation)

and kept in an HRTF Lib (a data file).

Distance is simulated just via independent intensity

scaling (via the use of the inverse square rule relative

to the egocentric centre) of the signal applied to the

right and left channels.

Reverberation is achieved via convolution with an

impulse response, previously calculated as the

addition of a first order ray tracing process (for early

reflections) applied to thethraedric rooms, plus a

random exponentially decreasing sample sequence

uncorrelated between left and right channels (for late

reverberation). This algorithmic solution for

geometrically simple environments can be replaced,

for more complex scenarios, by the direct

introduction of a measured impulse response, via

manual configuration of the reverberation filters.

3 Future work

Regarding the filtering process, optimisation of the

FFT implementation (which it is currently fairly

optimised) could be further achieved (20-30% speed

increase) via any of the reported divide and conquer

algorithms, which take profit of symmetries with

impulse responses whose length is a power of two.

However, a more important problem for real-time

applications is the time delay (greater as the quality,

that is, the impulse response length, increases)

inherent to the FFT algorithm. To solve it, some

authors [5] have proposed hybrid (time domain -

frequency domain) convolution.

Regarding the spatialisation process, in order to

achieve greater realism of the simulated sound

trajectories, a finer resolution for available HRTF

measures would be desired. This could be performed

via lineal interpolation of the available data.

Open space distance simulation should consider the

effect of the medium, characterised as a function of

the sound frequency. Also the doppler shift should be

taken into account if we deal with large distance

variations.

Finally, reverberation in non controlled synthetic

environments (that is, when a measured impulse

response is not available) should consider the

frequency dependent effect of the medium and the

reflecting surfaces.

4 Test application

In order to demonstrate in a practical way the

functionality and performance of the developed

modules, a MS Windows test application has been

developed using the provided capabilities.

Figure 3 shows the user interface of the application. It

has been designed so that all the basic aspects of 3D

sound and reverberation are covered.

Azimut

Elevation

Distance

Duplicate

Left filter

Duplicate

Right filter

Current configuration

Spatialisation (CHrtf)

Azimut

Elevation

Distance

Delay

Atenuation

Localisation

Change

Delay and

atenuation

computation

Figure 2. CHrtf functional diagram

Figure 3. A screen capture of the test application

The sound source must be obtained from a PCM .wav

file, while the spatialised output can be either saved to

disk or directly redirected to an MCI compatible

sound card.

The possibility to dynamically change the location of

the sound source respect to the listener, can be

applied in two different reverberant environments: an

artificial anecoic acoustic environment (on the left

half of the screen) or a reverberant one (on the right).

Always limited by the input quality, it is possible to

select the quality of the processed sound output (high,

middle and low). Also the reflection index of the

surfaces in the acoustic reverberating environment

can be controlled.

5 Conclusions

The described work provides a set of ready-to-use and

easy-to-use classes, intended to add sound

spatialisation features to multimedia applications.

More than a contribution to 3D sound specifications

and algorithms, this shows a working implementation

of a dynamically configurable system on a low cost

platform.

References

[1] VRML97, ISO/IEC 14772-1:1997. The Virtual

Reality Modelling Language

[2] INTEL RSX (Realistic Sound Experience), at

http://developer.intel.com/ial/rsx/

[3] W.G. Gardner, and K. Martin, "HRTF

Measurements of a KEMAR", J. Acoust. Soc.

Am, 97(6), pp 3907-3908, 1995.

[4] J. Bescós, et al., "From Multimedia Stream

models to GUI generation", Proceedings of the

SPIE Conference on Voice, Video and Data

Communications, Vol. 2495, pp 136-146,

Boston, November 1996.

[5] W.G. Gardner, "Efficient convolution without

input-output Delay", Presented at the 97th

convention of the Audio Engineering Society,

San Francisco. Pre-print 3897, 1994

